Approximate Bayesian Computation via Classification

被引:0
|
作者
Wang, Yuexi [1 ]
Kaji, Tetsuya [1 ]
Rockova, Veronika [1 ]
机构
[1] Univ Chicago, Booth Sch Business, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
Approximate Bayesian Computation; Classification; Likelihood-free Inference; Kullback-Leibler Divergence; Posterior Concentration; DIVERGENCE ESTIMATION; INFERENCE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Approximate Bayesian Computation (ABC) enables statistical inference in simulator-based models whose likelihoods are difficult to calculate but easy to simulate from. ABC constructs a kernel-type approximation to the posterior distribution through an accept/reject mechanism which compares summary statistics of real and simulated data. To obviate the need for summary statistics, we directly compare empirical distributions with a Kullback-Leibler (KL) divergence estimator obtained via contrastive learning. In particular, we blend flexible machine learning classifiers within ABC to automate fake/real data comparisons. We consider the traditional accept/reject kernel as well as an exponential weighting scheme which does not require the ABC acceptance threshold. Our theoretical results show that the rate at which our ABC posterior distributions concentrate around the true parameter depends on the estimation error of the classifier. We derive limiting posterior shape results and find that, with a properly scaled exponential kernel, asymptotic normality holds. We demonstrate the usefulness of our approach on simulated examples as well as real data in the context of stock volatility estimation.
引用
收藏
页数:49
相关论文
共 50 条
  • [1] Approximate Bayesian Computation via Classification
    Wang, Yuexi
    Kaji, Tetsuya
    Rockova, Veronika
    Journal of Machine Learning Research, 2022, 23
  • [2] Filtering via approximate Bayesian computation
    Jasra, Ajay
    Singh, Sumeetpal S.
    Martin, James S.
    McCoy, Emma
    STATISTICS AND COMPUTING, 2012, 22 (06) : 1223 - 1237
  • [3] Filtering via approximate Bayesian computation
    Ajay Jasra
    Sumeetpal S. Singh
    James S. Martin
    Emma McCoy
    Statistics and Computing, 2012, 22 : 1223 - 1237
  • [4] Approximate Bayesian Computation Via the Energy Statistic
    Hien Duy Nguyen
    Arbel, Julyan
    Lu, Hongliang
    Forbes, Florence
    IEEE ACCESS, 2020, 8 : 131683 - 131698
  • [5] Cophylogeny Reconstruction via an Approximate Bayesian Computation
    Baudet, C.
    Donati, B.
    Sinaimeri, B.
    Crescenzi, P.
    Gautier, C.
    Matias, C.
    Sagot, M. -F.
    SYSTEMATIC BIOLOGY, 2015, 64 (03) : 416 - 431
  • [6] Approximate Bayesian computation via regression density estimation
    Fan, Yanan
    Nott, David J.
    Sisson, Scott A.
    STAT, 2013, 2 (01): : 34 - 48
  • [7] Predictive Approximate Bayesian Computation via Saddle Points
    Yang, Yingxiang
    Dai, Bo
    Kiyavash, Negar
    He, Niao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [8] Inference for SDE Models via Approximate Bayesian Computation
    Picchini, Umberto
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2014, 23 (04) : 1080 - 1100
  • [9] Approximate Bayesian Computation
    Beaumont, Mark A.
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 6, 2019, 6 : 379 - 403
  • [10] Approximate Bayesian Computation
    Sunnaker, Mikael
    Busetto, Alberto Giovanni
    Numminen, Elina
    Corander, Jukka
    Foll, Matthieu
    Dessimoz, Christophe
    PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (01)