An artificial damping method for total Lagrangian SPH method with application in biomechanics

被引:32
|
作者
Zhang, Chi [1 ]
Zhu, Yujie [1 ,2 ]
Yu, Yongchuan [1 ]
Wu, Dong [1 ]
Rezavand, Massoud [1 ]
Shao, Songdong [3 ,4 ]
Hu, Xiangyu [1 ]
机构
[1] Tech Univ Munich, TUM Sch Engn & Design, D-85748 Garching, Germany
[2] Xian Res Inst Hitech, Xian 70025, Peoples R China
[3] Dongguan Univ Technol, Ctr Hydrosphere Sci, Key Lab Engn Software, Dongguan 523808, Peoples R China
[4] Dongguan Univ Technol, Sch Environm & Civil Engn, Dongguan 523808, Peoples R China
基金
中国国家自然科学基金;
关键词
Total Lagrangian formulation; Smoothed particle hydrodynamics; Solid dynamics; Kelvin-Voigt damper; SMOOTHED PARTICLE HYDRODYNAMICS; TENSION INSTABILITY; TETRAHEDRAL ELEMENT; NODAL INTEGRATION; ALGORITHM; FORMULATION; SIMULATION; IMPACT; MODEL;
D O I
10.1016/j.enganabound.2022.05.022
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Introducing artificial damping into the momentum equation to enhance the numerical stability of the smoothed particle hydrodynamics (SPH) method for large strain dynamics has been well established, however, implementing appropriate damping term in the constitutive model as an alternative stabilization strategy in the context of the SPH method is still not investigated. In this paper, we present a simple stabilization procedure by introducing an artificial damping term into the second Piola-Kirchhoff stress to enhance the numerical stability of the SPH method in total Lagrangian formulation. The key idea is to reformulate the constitutive equation by adding a Kelvin-Voigt (KV) type damper with a scaling factor imitating a von Neumann-Richtmyer type artificial viscosity to alleviate the spurious oscillation in the vicinity of sharp spatial gradients. The proposed method is shown to effectively eliminate the appearance of spurious non-physical instabilities and easy to be implemented into the original total Lagrangian SPH formulation. After validating the numerical stability and accuracy of the present method through a set of benchmark tests with very challenging cases, we demonstrate its applications and potentials in the field of biomechanics by simulating the deformation of complex stent structures and the electromechanical excitation-contraction of the realistic left ventricle.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [31] Accelerated augmented Lagrangian method for total variation minimization
    Liu, Zexian
    Liu, Hongwei
    Wang, Xiping
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (02):
  • [32] Accelerated augmented Lagrangian method for total variation minimization
    Zexian Liu
    Hongwei Liu
    Xiping Wang
    Computational and Applied Mathematics, 2019, 38
  • [33] An Augmented Lagrangian Method for Total Variation Video Restoration
    Chan, Stanley H.
    Khoshabeh, Ramsin
    Gibson, Kristofor B.
    Gill, Philip E.
    Nguyen, Truong Q.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (11) : 3097 - 3111
  • [34] Thermomechanical modeling in elastic body with corotated total Lagrangian SPH
    Lee, Wanki
    Shin, Dongbin
    COMPUTERS & STRUCTURES, 2024, 301
  • [35] A new Lagrangian-Eulerian incompressible SPH method for simulating free surface flows
    Heydari, Zohreh
    Shobeyri, Gholamreza
    Najafabadi, Seyed Hossein Ghoreishi
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (09)
  • [36] Artificial damping method for local instability problems in shells
    Kobayashi, T.
    Mihara, Y.
    Fujii, F.
    SHELL STRUCTURES: THEORY AND APPLICATIONS, VOL 3, 2014, : 203 - 206
  • [37] The convergence of the SPH method
    Di Lisio, R
    Grenier, E
    Pulvirenti, M
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 35 (1-2) : 95 - 102
  • [38] An SPH projection method
    Cummins, SJ
    Rudman, M
    JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 152 (02) : 584 - 607
  • [39] SPH Method with Surface Tension and Its Application in Droplets Colliding
    Qiang Hongfu
    Chen Fuzhen
    Gao Weiran
    PROCEEDINGS OF 2010 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON AEROSPACE TECHNOLOGY, VOL 1 AND 2, 2010, : 1192 - 1195
  • [40] Application of the SPH method to solitary wave impact on an offshore platform
    K. Pan
    R. H. A. IJzermans
    B. D. Jones
    A. Thyagarajan
    B. W. H. van Beest
    J. R. Williams
    Computational Particle Mechanics, 2016, 3 : 155 - 166