Machine learning in resting-state fMRI analysis

被引:118
|
作者
Khosla, Meenakshi [1 ]
Jamison, Keith [2 ]
Ngo, Gia H. [1 ]
Kuceyeski, Amy [2 ,3 ]
Sabuncu, Mert R. [1 ,4 ]
机构
[1] Cornell Univ, Sch Elect & Comp Engn, 300 Frank HT Rhodes Hall, Ithaca, NY 14853 USA
[2] Weill Cornell Med Coll, Radiol, New York, NY USA
[3] Weill Cornell Med Coll, Brain & Mind Res Inst, New York, NY USA
[4] Cornell Univ, Nancy E & Peter C Meinig Sch Biomed Engn, Ithaca, NY 14853 USA
关键词
Machine learning; Resting-state; Functional MRI; Intrinsic networks; Brain connectivity; FUNCTIONAL CONNECTIVITY PATTERNS; INDEPENDENT COMPONENT ANALYSIS; BRAIN CONNECTIVITY; ALZHEIMERS-DISEASE; MAJOR DEPRESSION; DYNAMIC CONNECTIVITY; SUSTAINED ATTENTION; SLEEP-DEPRIVATION; CEREBRAL-CORTEX; NETWORKS;
D O I
10.1016/j.mri.2019.05.031
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Machine learning techniques have gained prominence for the analysis of resting-state functional Magnetic Resonance Imaging (rs-fMRI) data. Here, we present an overview of various unsupervised and supervised machine learning applications to rs-fMRI. We offer a methodical taxonomy of machine learning methods in restingstate fMRI. We identify three major divisions of unsupervised learning methods with regard to their applications to rs-fMRI, based on whether they discover principal modes of variation across space, time or population. Next, we survey the algorithms and rs-fMRI feature representations that have driven the success of supervised subjectlevel predictions. The goal is to provide a high-level overview of the burgeoning field of rs-fMRI from the perspective of machine learning applications.
引用
收藏
页码:101 / 121
页数:21
相关论文
共 50 条
  • [41] Regression-based machine-learning approaches to predict task activation using resting-state fMRI
    Cohen, Alexander D.
    Chen, Ziyi
    Jones, Oiwi Parker
    Niu, Chen
    Wang, Yang
    [J]. HUMAN BRAIN MAPPING, 2020, 41 (03) : 815 - 826
  • [42] Weighted Random Support Vector Machine Clusters Analysis of Resting-State fMRI in Mild Cognitive Impairment
    Bi, Xia-an
    Xu, Qian
    Luo, Xianhao
    Sun, Qi
    Wang, Zhigang
    [J]. FRONTIERS IN PSYCHIATRY, 2018, 9
  • [43] Explicability in resting-state fMRI for gender classification
    Raison, Adrien
    Bourdon, Pascal
    Habas, Christophe
    Helbert, David
    [J]. 2021 SIXTH INTERNATIONAL CONFERENCE ON ADVANCES IN BIOMEDICAL ENGINEERING (ICABME), 2021, : 5 - 8
  • [44] Editorial: Origins of the Resting-State fMRI Signal
    Chen, J. Jean
    Herman, Peter
    Keilholz, Shella
    Thompson, Garth J.
    [J]. FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [45] Phenotyping Superagers Using Resting-State fMRI
    de Godoy, L. L.
    Studart-Neto, A.
    de Paula, D. R.
    Green, N.
    Halder, A.
    Arantes, P.
    Chaim, K. T.
    Moraes, N. C.
    Yassuda, M. S.
    Nitrini, R.
    Dresler, M.
    Leite, C. da Costa
    Panovska-Griffiths, J.
    Soddu, A.
    Bisdas, S.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2023, 44 (04) : 424 - 433
  • [46] Resting-state fMRI in primary Sjogren syndrome
    Xing, Wu
    Shi, Wei
    Leng, Yueshuang
    Sun, Xianting
    Guan, Tingting
    Liao, Weihua
    Wang, Xiaoyi
    [J]. ACTA RADIOLOGICA, 2018, 59 (09) : 1091 - 1096
  • [47] Topological Properties of Resting-State fMRI Functional Networks Improve Machine Learning-Based Autism Classification
    Kazeminejad, Amirali
    Sotero, Roberto C.
    [J]. FRONTIERS IN NEUROSCIENCE, 2019, 12
  • [48] Resting-State fMRI and Developmental Systems Neuroscience
    Uddin, Lucina Q.
    [J]. BIOLOGICAL PSYCHIATRY, 2012, 71 (08) : 22S - 22S
  • [49] Resting-state fMRI in the Human Connectome Project
    Smith, Stephen M.
    Beckmann, Christian F.
    Andersson, Jesper
    Auerbach, Edward J.
    Bijsterbosch, Janine
    Douaud, Gwenaelle
    Duff, Eugene
    Feinberg, David A.
    Griffanti, Ludovica
    Harms, Michael P.
    Kelly, Michael
    Laumann, Timothy
    Miller, Karla L.
    Moeller, Steen
    Petersen, Steve
    Power, Jonathan
    Salimi-Khorshidi, Gholamreza
    Snyder, Abraham Z.
    Vu, An T.
    Woolrich, Mark W.
    Xu, Junqian
    Yacoub, Essa
    Ugurbil, Kamil
    Van Essen, David C.
    Glasser, Matthew F.
    [J]. NEUROIMAGE, 2013, 80 : 144 - 168
  • [50] Machine Learning Classification of Neuropsychiatric Systemic Lupus Erythematosus patients using resting-state fMRI functional connectivity
    Simos, N. J.
    Manikis, G. C.
    Papadaki, E.
    Kavroulakis, E.
    Bertsias, G.
    Marias, K.
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS & TECHNIQUES (IST 2019), 2019,