Nonexistence results for pseudo-parabolic equations in the Heisenberg group

被引:8
|
作者
Jleli, Mohamed [1 ]
Kirane, Mokhtar [2 ,3 ]
Samet, Bessem [1 ]
机构
[1] King Saud Univ, Dept Math, Coll Sci, POB 2455, Riyadh 11451, Saudi Arabia
[2] Univ La Rochelle, Pole Sci & Technol, Lab Math Image & Applicat, Ave M Crepeau, F-17042 La Rochelle, France
[3] King Abdulaziz Univ, Fac Sci, Dept Math, NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
来源
MONATSHEFTE FUR MATHEMATIK | 2016年 / 180卷 / 02期
关键词
Nonexistence; Nonlinear pseudo-parabolic equation; System; Heisenberg group; CRITICAL EXPONENT; CAUCHY-PROBLEM; INEQUALITIES; THEOREMS;
D O I
10.1007/s00605-015-0823-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive sufficient conditions for the nonexistence of global weak solutions to the nonlinear pseudo-parabolic equation ut - Hut - Hu = |u| p +f(t,.),(t,.).(0,8)xH,where is the Kohn-Laplace operator on the -dimensional Heisenberg group , and is a given function. Next, we extend this result to the case of systems. Our technique of proof is based on the test function method.
引用
收藏
页码:255 / 270
页数:16
相关论文
共 50 条
  • [41] Well-posedness and longtime dynamics for the finitely degenerate parabolic and pseudo-parabolic equations
    Liu, Gongwei
    Tian, Shuying
    JOURNAL OF EVOLUTION EQUATIONS, 2024, 24 (01)
  • [42] SOLUTIONS FOR PSEUDO-PARABOLIC PROBLEMS
    LYASHKO, SI
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1985, (09): : 71 - 72
  • [43] Direct and inverse problems for time-fractional pseudo-parabolic equations
    Ruzhansky, Michael
    Serikbaev, Daurenbek
    Torebek, Berikbol T.
    Tokmagambetov, Niyaz
    QUAESTIONES MATHEMATICAE, 2022, 45 (07) : 1071 - 1089
  • [44] Well-posedness and longtime dynamics for the finitely degenerate parabolic and pseudo-parabolic equations
    Gongwei Liu
    Shuying Tian
    Journal of Evolution Equations, 2024, 24
  • [45] Blow-up time of solutions to a class of pseudo-parabolic equations
    Zhou, Jun
    Wang, Xiongrui
    COMPTES RENDUS MECANIQUE, 2023, 351 : 219 - 226
  • [46] Painleve analysis, dark and singular structures for pseudo-parabolic type equations
    Arshed, Saima
    Raza, Nauman
    Kaplan, Melike
    MODERN PHYSICS LETTERS B, 2022, 36 (22):
  • [47] General decay and blow-up results for a class of nonlinear pseudo-parabolic equations with viscoelastic term
    Ngo Tran Vua
    Dao Bao Dung
    Huynh Thi Hoang Dung
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 516 (02)
  • [49] Bounds for Blow-up Time in Nonlinear Pseudo-parabolic Equations
    M. Meyvacı
    Mediterranean Journal of Mathematics, 2018, 15
  • [50] Two approximation methods for fractional order Pseudo-Parabolic differential equations
    Modanli, Mahmut
    Goktepe, Ecem
    Akgul, Ali
    Alsallami, Shami A. M.
    Khalil, E. M.
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (12) : 10333 - 10339