Variation of axial and radial temperature in an expanded thermal plasma jet

被引:4
|
作者
Bora, B. [1 ]
Kakati, M. [2 ]
Das, A. K. [3 ]
机构
[1] Ctr Plasma Phys, Sonapur 782402, Assam, India
[2] Dibrugarh Univ, Dept Phys, Thermal Plasma Proc Mat Lab, Dibrugarh 786004, Assam, India
[3] Bhabha Atom Res Ctr, Div Laser & Plasma Technol, Bombay 400085, Maharashtra, India
关键词
EXPANSION;
D O I
10.1017/S0022377809990511
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The distribution of temperature in an expanded thermal plasma jet is investigated by modified Langmuir probes. The validation of classical probe theory in the entire experimental chamber pressure range of 10-100 mbar is thoroughly established before the measurements. The average temperature of the plasma jet at the nozzle exit was also measured by calorimetric estimation of total heat loss from the plasma upstream of that point. A correlation is made using simple analytical expression in between the average temperature measured from the heat loss data and the centerline temperature at the nozzle exit measured by Langmuir probe. The profile parameter n for the radial distribution of temperature in a plasma jet is calculated for different operating current and gas flow rates.
引用
收藏
页码:699 / 707
页数:9
相关论文
共 50 条
  • [41] Instability of a leaky dielectric coaxial jet in both axial and radial electric fields
    Li, Fang
    Yin, Xie-Yuan
    Yin, Xie-Zhen
    PHYSICAL REVIEW E, 2008, 78 (03):
  • [42] SPECTROSCOPIC TEMPERATURE MEASUREMENT ON A PLASMA JET
    BOGERSHAUSEN, W
    CONSEE, O
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 1970, B 25 (06) : 289 - +
  • [43] THE PLASMA JET IN HIGH TEMPERATURE RESEARCH
    KATZ, S
    LATOS, EJ
    RAISEN, E
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1960, 52 (04): : 289 - 290
  • [44] Ambient Species Density and Gas Temperature Radial Profiles Derived from a Schlieren Technique in a Low-Frequency Non-thermal Oxygen Plasma Jet
    J. C. Chamorro
    L. Prevosto
    E. Cejas
    G. Fischfeld
    H. Kelly
    B. Mancinelli
    Plasma Chemistry and Plasma Processing, 2018, 38 : 45 - 61
  • [45] Ambient Species Density and Gas Temperature Radial Profiles Derived from a Schlieren Technique in a Low-Frequency Non-thermal Oxygen Plasma Jet
    Chamorro, J. C.
    Prevosto, L.
    Cejas, E.
    Fischfeld, G.
    Kelly, H.
    Mancinelli, B.
    PLASMA CHEMISTRY AND PLASMA PROCESSING, 2018, 38 (01) : 45 - 61
  • [46] Characteristics of Plasma Antennas under Radial and Axial Density Variations
    Sadeghikia, F.
    Hodjat-Kashani, F.
    Rashed-Mohassel, J.
    Ghayoomeh-Bozorgi, S. J.
    PIERS 2012 MOSCOW: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2012, : 1212 - 1215
  • [47] The axial propagation of plasma upon radial injection in a current interrupter
    Koval'chuk, BM
    Zherlitsyn, AA
    TECHNICAL PHYSICS LETTERS, 2004, 30 (02) : 154 - 156
  • [48] The axial propagation of plasma upon radial injection in a current interrupter
    B. M. Koval’chuk
    A. A. Zherlitsyn
    Technical Physics Letters, 2004, 30 : 154 - 156
  • [49] Axial and Radial Thermal Responses of a Field-Scale Energy Pile under Monotonic and Cyclic Temperature Changes
    Faizal, Mohammed
    Bouazza, Abdelmalek
    Haberfield, Chris
    McCartney, John S.
    JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2018, 144 (10)
  • [50] Features of the Radial and Axial Distributions of the Toroidal Magnetic Field in the Axial Jet Ejection at the PF-3 Facility
    V. I. Krauz
    K. N. Mitrofanov
    V. V. Myalton
    I. V. Il’ichev
    A. M. Kharrasov
    Yu. V. Vinogradova
    Plasma Physics Reports, 2021, 47 : 912 - 937