Enhanced capacity and significant rate capability of Mn3O4/reduced graphene oxide nanocomposite as high performance anode material in lithium-ion batteries

被引:39
|
作者
Weng, Shao-Chieh [1 ]
Brahma, Sanjaya [1 ,4 ]
Huang, Po-Chia [1 ,5 ]
Huang, Yong-Cun [1 ]
Lee, Yu-Hsuan [1 ]
Chang, Chia-Chin [2 ]
Huang, Jow-Lay [1 ,3 ,4 ]
机构
[1] Natl Cheng Kung Univ, Dept Mat Sci & Engn, Tainan 701, Taiwan
[2] Natl Univ Tainan, Dept Greenergy, Tainan 701, Taiwan
[3] Natl Cheng Kung Univ, Ctr Micronano Sci & Technol, Tainan 70101, Taiwan
[4] Natl Cheng Kung Univ, Hierarch Green Energy Mat Hi GEM Res Ctr, Tainan 70101, Taiwan
[5] Natl Synchrotron Radiat Res Ctr, Expt Facil Div, Xray Scattering Grp, Hsinchu 101, Taiwan
关键词
Li ion batteries; Mn3O4/rGO nanocomposite; Anode material; Chemical synthesis; Energy storage; IMPROVED REVERSIBLE CAPACITY; ELECTROCHEMICAL PROPERTIES; EXCELLENT PERFORMANCE; MN3O4; NANOPARTICLES; SODIUM-BOROHYDRIDE; CYCLIC STABILITY; FACILE SYNTHESIS; LI-STORAGE; CO; NANOCRYSTALS;
D O I
10.1016/j.apsusc.2019.144629
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report enhanced capacity, significant rate capability of Mn3O4 microsheet and reduced graphene oxide (Mn3O4/rGO) nanocomposite as high performance anode material in lithium ion battery. The Mn3O4/rGO nanocomposite prepared by a facile, low temperature chemical reduction procedure has achieved superior capacity of similar to 677 mAh g(-1) (current rate = 123 mA g(-1)) after 150 charge/discharge cycles (retention = 85%) and appreciable rate capability of 640 mAh g(-1) @1.2 A g(-1). The comparative investigation reveals the distinguished electrochemical performance of Mn3O4/rGO as compared with MnO2/rGO, MnO2 and graphene oxide. Lithium ion diffusion coefficient of Mn3O4/rGO (2.4 x 10(-1) m(2) s(-1)) is higher than MnO2/rGO, MnO2 and graphene oxide that facilitates the smooth passage of Li ions in the composite delivering noticeable electrochemical performance. Mn3O4/rGO is synthesized by the simple chemical reduction of MnO2 nanorod/rGO nanocomposite and the procedure can be extended for the synthesis of other potentially useful, simple/complex metal oxides (varying shape and size) as anode materials in lithium ion batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Coprecipitated 3D nanostructured graphene oxide–Mn3O4 hybrid as anode of lithium-ion batteries
    Yongjie Wang
    Journal of Materials Research, 2015, 30 : 484 - 492
  • [22] Si-Mn/Reduced Graphene Oxide Nanocomposite Anodes with Enhanced Capacity and Stability for Lithium-Ion Batteries
    Park, A. Reum
    Kim, Jung Sub
    Kim, Kwang Su
    Zhang, Kan
    Park, Juhyun
    Park, Jong Hyeok
    Lee, Joong Kee
    Yoo, Pil J.
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (03) : 1702 - 1708
  • [23] Enhanced electrochemical performance of CoMoO4 nanorods/reduced graphene oxide as anode material for lithium-ion batteries
    Yang, Ting
    Zhang, Haonan
    Luo, Yazi
    Mei, Lin
    Guo, Di
    Li, Qiuhong
    Wang, Taihong
    ELECTROCHIMICA ACTA, 2015, 158 : 327 - 332
  • [24] α-Fe2O3 as an anode material with capacity rise and high rate capability for lithium-ion batteries
    Hassan, Mohd Faiz
    Guo, Zaiping
    Chen, Zhixin
    Liu, Huakun
    MATERIALS RESEARCH BULLETIN, 2011, 46 (06) : 858 - 864
  • [25] Nanoarchitectured Co3O4/reduced graphene oxide as anode material for lithium-ion batteries with enhanced cycling stability
    Zehua Chen
    Yu Gao
    Xingying Chen
    Baolin Xing
    Chuanxiang Zhang
    Shuo Wang
    Ting Liu
    Yuan Liu
    Zhanying Zhang
    Ionics, 2019, 25 : 5779 - 5786
  • [26] Nanoarchitectured Co3O4/reduced graphene oxide as anode material for lithium-ion batteries with enhanced cycling stability
    Chen, Zehua
    Gao, Yu
    Chen, Xingying
    Xing, Baolin
    Zhang, Chuanxiang
    Wang, Shuo
    Liu, Ting
    Liu, Yuan
    Zhang, Zhanying
    IONICS, 2019, 25 (12) : 5779 - 5786
  • [27] Effect of Mn3O4 nanoparticle composition and distribution on graphene as a potential hybrid anode material for lithium-ion batteries
    Ayhan, Ismail Alperen
    Li, Qi
    Meduri, Praveen
    Oh, Hyukkeun
    Bhimanapati, Ganesh R.
    Yang, Guang
    Robinson, Joshua A.
    Wang, Qing
    RSC ADVANCES, 2016, 6 (39): : 33022 - 33030
  • [28] Mn doped FeCO3/reduced graphene composite as anode material for high performance lithium-ion batteries
    Zhang, Congcong
    Cai, Xin
    Xu, Donghui
    Chen, Wenyan
    Fang, Yueping
    Yu, Xiaoyuan
    APPLIED SURFACE SCIENCE, 2018, 428 : 73 - 81
  • [29] High rate capability and long cycle stability Fe3O4-graphene nanocomposite as anode material for lithium ion batteries
    Zhang, Mei
    Jia, Mengqiu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 551 : 53 - 60
  • [30] Solvothermal synthesis of Mn3O4 as an anode material for lithium ion batteries
    Yang, Yun
    Yang, Shuijin
    Feng, Chuanqi
    Zheng, Hao
    Xia, Qinghua
    JOURNAL OF ELECTROCERAMICS, 2019, 42 (3-4) : 156 - 164