Bang-Bang Optimal Control for Multi-stage Uncertain Systems

被引:0
|
作者
Kang, Yujie [1 ]
Zhu, Yuanguo [1 ]
机构
[1] Nanjing Univ Sci & Technol, Dept Appl Math, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-stage uncertain system; Bang-bang optimal control; Bellman's principle of optimality;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A bang-bang optimal control model is considered for a multi-stage uncertain system which is disturbed by an uncertain variable at every stage. Based on Bellman's principle of optimality in dynamic programming, the bang-bang optimal controls for the model with a linear objective function subject to an uncertain system are obtained.
引用
收藏
页码:3229 / 3237
页数:9
相关论文
共 50 条
  • [31] Synthesis of optimal signals for Lipschitzian bang-bang actuators of dynamic systems
    Gabasov, R
    Kirillova, FM
    Kavalionak, NN
    DOKLADY MATHEMATICS, 2004, 70 (02) : 835 - 839
  • [32] EXACT BANG-BANG OPTIMAL-CONTROL FOR PROBLEMS WITH NONLINEAR COSTS
    BALDER, EJ
    LECTURE NOTES IN ECONOMICS AND MATHEMATICAL SYSTEMS, 1992, 382 : 371 - 383
  • [33] Approximate bang-bang Lyapunov control for closed quantum systems
    Kuang, Sen
    Dong, Daoyi
    Petersen, Ian R.
    2014 4TH AUSTRALIAN CONTROL CONFERENCE (AUCC), 2014, : 130 - 135
  • [34] Synthesis of optimal signals of dynamical systems with Lipschitzan bang-bang actuators
    Gabasov, R.
    Kirillova, F.M.
    Kavalenok, N.N.
    Doklady Akademii Nauk, 2004, 398 (06) : 748 - 752
  • [35] ON SOME GENERALIZATION OF BANG-BANG CONTROL
    RACZYNSKI, S
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1984, 98 (01) : 282 - 295
  • [36] ON BENES BANG-BANG CONTROL PROBLEM
    CHRISTOPEIT, N
    HELMES, K
    APPLIED MATHEMATICS AND OPTIMIZATION, 1982, 9 (02): : 163 - 176
  • [37] Control of chaos by occasional bang-bang
    Starrett, J
    PHYSICAL REVIEW E, 2003, 67 (03):
  • [38] The Bang-Bang Funnel Controller for Uncertain Nonlinear Systems With Arbitrary Relative Degree
    Liberzon, Daniel
    Trenn, Stephan
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (12) : 3126 - 3141
  • [39] Holder Regularity in Bang-Bang Type Affine Optimal Control Problems
    Corella, Alberto Dominguez
    Veliov, Vladimir M.
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2021), 2022, 13127 : 306 - 313
  • [40] Bang-bang property for an uncertain saddle point problem
    Sun, Yun
    Zhu, Yuanguo
    JOURNAL OF INTELLIGENT MANUFACTURING, 2017, 28 (03) : 605 - 613