MIXED FINITE ELEMENT METHOD FOR A DEGENERATE CONVEX VARIATIONAL PROBLEM FROM TOPOLOGY OPTIMIZATION

被引:4
|
作者
Carstensen, Carsten [1 ,2 ]
Guenther, David [3 ]
Rabus, Hella [1 ]
机构
[1] Humboldt Univ, D-10099 Berlin, Germany
[2] Yonsei Univ, Dept Computat Sci & Engn, Seoul 120749, South Korea
[3] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
关键词
adaptive finite element method; adaptive mixed finite element method; optimal design; degenerate convex minimization; OPTIMAL-DESIGN; NUMERICAL-ANALYSIS; RELAXATION; CONVERGENCE;
D O I
10.1137/100806837
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The optimal design task of this paper seeks the distribution of two materials of prescribed amounts for maximal torsion stiffness of an infinite bar of a given cross section. This example of relaxation in topology optimization leads to a degenerate convex minimization problem E (v) := integral(Omega)phi(0)(vertical bar del v vertical bar) dx - integral(Omega) fv dx for v is an element of V := H-0(1)(Omega) with possibly multiple primal solutions u, but with unique stress sigma := phi'(0) (vertical bar del u vertical bar) sign del u. The mixed finite element method is motivated by the smoothness of the stress variable sigma is an element of H-loc(1) (Omega; R-2), while the primal variables are uncontrollable and possibly nonunique. The corresponding nonlinear mixed finite element method is introduced, analyzed, and implemented. The striking result of this paper is a sharp a posteriori error estimation in the dual formulation, while the a posteriori error analysis in the primal problem suffers from the reliability-efficiency gap. An empirical comparison of that primal formulation with the new mixed discretization schemes is intended for uniform and adaptive mesh refinements.
引用
收藏
页码:522 / 543
页数:22
相关论文
共 50 条
  • [21] Evolutionary topology optimization using the extended finite element method and isolines
    Abdi, Meisam
    Wildman, Ricky
    Ashcroft, Ian
    ENGINEERING OPTIMIZATION, 2014, 46 (05) : 628 - 647
  • [22] SOLUTION BY A FINITE-ELEMENT METHOD OF THE DIRICHLET PROBLEM FOR A DEGENERATE ELLIPTIC OPERATOR
    LEMOING, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1981, 292 (03): : 217 - 220
  • [23] Topology optimization using the p-version of the finite element method
    Nguyen, Tam H.
    Le, Chau H.
    Hajjar, Jerome F.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2017, 56 (03) : 571 - 586
  • [24] Topology optimization using the p-version of the finite element method
    Tam H. Nguyen
    Chau H. Le
    Jerome F. Hajjar
    Structural and Multidisciplinary Optimization, 2017, 56 : 571 - 586
  • [25] A Finite Element Removal Method for 3D Topology Optimization
    Kutuk, M. Akif
    Gov, Ibrahim
    ADVANCES IN MECHANICAL ENGINEERING, 2013,
  • [26] Efficient structure topology optimization by using the multiscale finite element method
    Hui Liu
    Yiqiang Wang
    Hongming Zong
    Michael Yu Wang
    Structural and Multidisciplinary Optimization, 2018, 58 : 1411 - 1430
  • [27] Efficient structure topology optimization by using the multiscale finite element method
    Liu, Hui
    Wang, Yiqiang
    Zong, Hongming
    Wang, Michael Yu
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2018, 58 (04) : 1411 - 1430
  • [28] A finite element analysis and topology optimization method for structures with free damping
    Lü, Yi-Ning
    Lü, Zhen-Hua
    Zhao, Bo
    Wang, Chao
    Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics, 2012, 29 (02): : 178 - 183
  • [29] Smoothed finite element method for topology optimization involving incompressible materials
    Li, Eric
    Chang, C. C.
    He, Z. C.
    Zhang, Zhongpu
    Li, Q.
    ENGINEERING OPTIMIZATION, 2016, 48 (12) : 2064 - 2089
  • [30] Finite element analysis of the dental implant using a topology optimization method
    Chang, Chih-Ling
    Chen, Chen-Sheng
    Huang, Chang-Hung
    Hsu, Ming-Lun
    MEDICAL ENGINEERING & PHYSICS, 2012, 34 (07) : 999 - 1008