Microstructure evolution of additively manufactured CoCrFeNiAl0.4 high-entropy alloy under thermo-mechanical processing

被引:13
|
作者
Li, Qiang [1 ]
Chen, Xiao [2 ]
Chen, Xizhang [1 ,5 ]
Siddiquee, Arshad Noor [3 ]
Deev, Vladislav B. [4 ]
Konovalov, Sergey [5 ]
Wen, Ming [6 ]
机构
[1] Wenzhou Univ, Sch Mech & Elect Engn, Wenzhou 325035, Zhejiang, Peoples R China
[2] China Univ Petr East China, Sch Mat Sci & Engn, Qingdao 266580, Shandong, Peoples R China
[3] Jamia Millia Islamia, Dept Mech Engn, New Delhi, India
[4] Natl Univ Sci & Technol MISIS, Dept Met Forming, Moscow, Russia
[5] Samara Natl Res Univ, Dept Met Technol & Aviat Mat, 34 Moskovskoye Shosse, Samara 443086, Russia
[6] Kunming Inst Precious Met, Yunnan Key Lab Precious Metall Mat, Kunming 650106, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermo-mechanical processing; Powder plasma arc additive; manufacturing; Work hardening rate; Texture evolution; Recrystallization; MECHANICAL-PROPERTIES; GRAIN-SIZE; TEXTURE EVOLUTION; TWIP STEEL; DEFORMATION; STRENGTH; BEHAVIOR; COLD; RECRYSTALLIZATION; DISLOCATION;
D O I
10.1016/j.jmrt.2021.12.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The microstructure and texture evolution during thermo-mechanical processing (TMP) and their relationship with the mechanical properties in the non-equiatomic CoCrFeNiAl0.4 high-entropy alloy (HEA) were investigated. In this work, a combination of cold rolling and annealing technology was used to investigate the HEA which has been fabricated by powder plasma arc additive manufacturing (PPA-AM) in the deformed and recrystallized states. Microstructure and texture analysis were performed by electron backscatter diffraction. The mechanical properties were evaluated using static tensile testing. It was substantiated that annealing twins facilitates the transition from the cube texture to the shear texture and has a great influence on the evolution of texture after TMP. Based on the research of CoCrFeNiAl0.4 high-entropy alloy, thermo-mechanical processing under appropriate conditions can increase the work hardening rate, but the work hardening rate is relatively stable under 30%-45% plastic deformation. The correlation during TMP between mechanical properties and work hardening, texture evolution, and recrystallization was discussed. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:442 / 450
页数:9
相关论文
共 50 条
  • [21] Effect of phase transformation of CoCrFeNiAl high-entropy alloy on mechanical properties of WC-CoCrFeNiAl composites
    Zhu, Shigen
    Hui, Jiaqi
    Sun, Xike
    Bin, Han
    Weiwei, Dong
    CERAMICS INTERNATIONAL, 2023, 49 (20) : 32388 - 32398
  • [22] Improving mechanical properties of an additively manufactured high-entropy alloy via post thermomechanical treatment
    Zhao, X. J.
    Deng, S.
    Li, J. F.
    Li, C.
    Lei, Y. Z.
    Luo, S. N.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 984
  • [23] Friction stir processing of wire arc additively manufactured Al-Zn-Mg-Cu alloy reinforced with high-entropy alloy particles: Microstructure and mechanical properties
    Shan, He
    Li, Yang
    Wang, Shuwen
    Yuan, Tao
    Chen, Shujun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1020
  • [24] Investigation on microstructure, superior tensile property and its mechanism in Al0.3CoCrFeNi high-entropy alloy via thermo-mechanical processing
    Zhao, Yanni
    Chen, Zhongwei
    Yan, Kang
    Le, Wei
    Naseem, Sufyan
    Zhang, Haolan
    Yang, Lanlan
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 866
  • [25] Dynamic spall properties of an additively manufactured, high-entropy alloy (CoCrFeMnNi)
    Euser, V. K.
    Mangan, A. S.
    Jones, D. R.
    Martinez, D. T.
    Steckley, T. E.
    Agrawal, A. K.
    Thoma, D. J.
    Fensin, S. J.
    MATERIALIA, 2024, 33
  • [26] Tribo-corrosion response of additively manufactured high-entropy alloy
    Shittu, Jibril
    Sadeghilaridjani, Maryam
    Pole, Mayur
    Muskeri, Saideep
    Ren, Jie
    Liu, Yanfang
    Tahoun, Ismael
    Arora, Harpreet
    Chen, Wen
    Dahotre, Narendra
    Mukherjee, Sundeep
    NPJ MATERIALS DEGRADATION, 2021, 5 (01)
  • [27] Tribo-corrosion response of additively manufactured high-entropy alloy
    Jibril Shittu
    Maryam Sadeghilaridjani
    Mayur Pole
    Saideep Muskeri
    Jie Ren
    Yanfang Liu
    Ismael Tahoun
    Harpreet Arora
    Wen Chen
    Narendra Dahotre
    Sundeep Mukherjee
    npj Materials Degradation, 5
  • [28] Significant transitions of microstructure and mechanical properties in additively manufactured Al-Co-Cr-Fe-Ni high-entropy alloy under heat treatment
    Shen, Qingkai
    Kong, Xiangdong
    Chen, Xizhang
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 815 (815):
  • [29] Refractory CrMoNbWV High-Entropy Alloy Manufactured by Mechanical Alloying and Spark Plasma Sintering: Evolution of Microstructure and Properties
    Razumov, Nikolay
    Makhmutov, Tagir
    Kim, Artem
    Shemyakinsky, Boris
    Shakhmatov, Aleksey
    Popovich, Vera
    Popovich, Anatoly
    MATERIALS, 2021, 14 (03) : 1 - 14
  • [30] Dependence of mechanical and surface characteristics on twin boundaries of CoCrFeNiAl high-entropy alloy
    Doan, Dinh-Quan
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2023, 153