A Semi-Supervised Approach to Sentiment Analysis of Tweets during the 2022 Philippine Presidential Election

被引:10
|
作者
Macrohon, Julio Jerison E. [1 ]
Villavicencio, Charlyn Nayve [1 ,2 ]
Inbaraj, X. Alphonse [1 ]
Jeng, Jyh-Horng [1 ]
机构
[1] I Shou Univ, Dept Informat Engn, Kaohsiung 84001, Taiwan
[2] Bulacan State Univ, Coll Informat & Commun Technol, Bulacan 3000, Philippines
关键词
2022 Philippine Presidential Election; semi-supervised learning; Natural Language Processing; sentiment analysis; !text type='Python']Python[!/text; social media; Twitter; tweets;
D O I
10.3390/info13100484
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the increasing popularity of Twitter as both a social media platform and a data source for companies, decision makers, advertisers, and even researchers alike, data have been so massive that manual labeling is no longer feasible. This research uses a semi-supervised approach to sentiment analysis of both English and Tagalog tweets using a base classifier. In this study involving the Philippines, where social media played a central role in the campaign of both candidates, the tweets during the widely contested race between the son of the Philippines' former President and Dictator, and the outgoing Vice President of the Philippines were used. Using Natural Language Processing techniques, these tweets were annotated, processed, and trained to classify both English and Tagalog tweets into three polarities: positive, neutral, and negative. Through the Self-Training with Multinomial Naive Bayes as base classifier with 30% unlabeled data, the results yielded an accuracy of 84.83%, which outweighs other studies using Twitter data from the Philippines.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Semi-supervised distributed representations of documents for sentiment analysis
    Park, Saerom
    Lee, Jaewook
    Kim, Kyoungok
    NEURAL NETWORKS, 2019, 119 : 139 - 150
  • [12] Sentiment based Analysis of Tweets during the US Presidential Elections
    Yaqub, Ussama
    Chun, Soon Ae
    Atluri, Vijayalakshmi
    Vaidya, Jaideep
    DG.O 2017: THE PROCEEDINGS OF THE 18TH ANNUAL INTERNATIONAL CONFERENCE ON DIGITAL GOVERNMENT RESEARCH: INNOVATIONS AND TRANSFORMATIONS IN GOVERNMENT, 2017, : 1 - 10
  • [13] A Sentiment Analysis System of Spanish Tweets and Its Application in Colombia 2014 Presidential Election
    Adrian Ceron-Guzman, Jhon
    Leon-Guzman, Elizabeth
    PROCEEDINGS OF 2016 IEEE INTERNATIONAL CONFERENCES ON BIG DATA AND CLOUD COMPUTING (BDCLOUD 2016) SOCIAL COMPUTING AND NETWORKING (SOCIALCOM 2016) SUSTAINABLE COMPUTING AND COMMUNICATIONS (SUSTAINCOM 2016) (BDCLOUD-SOCIALCOM-SUSTAINCOM 2016), 2016, : 250 - 257
  • [14] Classifying Sentiment of Dialectal Arabic Reviews: A Semi-Supervised Approach
    Al-Harbi, Omar
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2019, 16 (06) : 995 - 1002
  • [15] A large-scale sentiment analysis of tweets pertaining to the 2020 US presidential election
    Ali, Rao Hamza
    Pinto, Gabriela
    Lawrie, Evelyn
    Linstead, Erik J.
    JOURNAL OF BIG DATA, 2022, 9 (01)
  • [16] A large-scale sentiment analysis of tweets pertaining to the 2020 US presidential election
    Rao Hamza Ali
    Gabriela Pinto
    Evelyn Lawrie
    Erik J. Linstead
    Journal of Big Data, 9
  • [17] Semi-supervised Dual Recurrent Neural Network for Sentiment Analysis
    Rong, Wenge
    Peng, Baolin
    Ouyang, Yuanxin
    Li, Chao
    Xiong, Zhang
    2013 IEEE 11TH INTERNATIONAL CONFERENCE ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING (DASC), 2013, : 438 - 445
  • [18] LSTM Based Semi-supervised Attention Framework for Sentiment Analysis
    Ji, Hanxue
    Rong, Wenge
    Liu, Jingshuang
    Ouyang, Yuanxin
    Xiong, Zhang
    2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019), 2019, : 1170 - 1177
  • [19] Building Normalized SentiMI to enhance semi-supervised sentiment analysis
    Khan, Farhan Hassan
    Qamar, Usman
    Bashir, Saba
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 29 (05) : 1805 - 1816
  • [20] Semi-Stacking for Semi-supervised Sentiment Classification
    Li, Shoushan
    Huang, Lei
    Wang, Jingjing
    Zhou, Guodong
    PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL) AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (IJCNLP), VOL 2, 2015, : 27 - 31