NON-PERTURBATIVE RENORMALIZATION GROUP: BASIC PRINCIPLES AND SOME APPLICATIONS

被引:3
|
作者
Mouhanna, D. [1 ]
Delamotte, B. [1 ]
Kownacki, J. -P. [2 ]
Tissier, M. [1 ]
机构
[1] UPMC, LPTMC, CNRS, UMR 7600, F-75252 Paris 05, France
[2] Univ Cergy Pontoise, LPTM, CNRS, UMR 8089, F-95302 Cergy Pontoise, France
来源
MODERN PHYSICS LETTERS B | 2011年 / 25卷 / 12-13期
关键词
Non-perturbative renormalization group; frustrated magnets; polymerized phantom membranes; PINNED ELASTIC-SYSTEMS; CRITICAL EXPONENTS; PHASE-TRANSITIONS; HEISENBERG-ANTIFERROMAGNET; TRIANGULAR LATTICE; MONTE-CARLO; 2ND-ORDER TRANSITION; FIELD-THEORY; FLUCTUATIONS; MODEL;
D O I
10.1142/S0217984911026589
中图分类号
O59 [应用物理学];
学科分类号
摘要
The non-perturbative renormalization group (NPRG), in its modern form, constitutes an efficient framework to investigate the physics of systems whose long-distance behavior is dominated by strong fluctuations that are out of reach of perturbative approaches. We present here the basic principles underlying the NPRG and illustrate its power in the context of two longstanding problems of condensed matter and soft matter physics: the nature of the phase transition occuring in frustrated magnets in three dimensions and the phase diagram of polymerized phantom membranes.
引用
收藏
页码:873 / 889
页数:17
相关论文
共 50 条
  • [31] Applications of exact renormalization group techniques to the non-perturbative study of supersymmetric gauge field theory
    Arnone, S
    Chiantese, S
    Yoshida, K
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (11): : 1811 - 1824
  • [32] Non-perturbative renormalization group analysis of the chiral critical behavior in QED
    Aoki, K
    Morikawa, K
    Sumi, J
    Terao, H
    Tomoyose, M
    PROGRESS OF THEORETICAL PHYSICS, 1997, 97 (03): : 479 - 489
  • [33] Non-perturbative renormalization group calculation of the scalar self-energy
    Blaizot, J.-P.
    Mendez-Galain, R.
    Wschebor, N.
    EUROPEAN PHYSICAL JOURNAL B, 2007, 58 (03): : 297 - 309
  • [34] Non-perturbative renormalization group calculation of the scalar self-energy
    J.-P. Blaizot
    R. Méndez-Galain
    N. Wschebor
    The European Physical Journal B, 2007, 58 : 297 - 309
  • [35] Finite-size scaling from the non-perturbative Renormalization Group
    Klein, Bertram
    Braun, Jens
    QCD AT WORK 2007, 2007, 964 : 330 - +
  • [36] Solving the dynamical chiral symmetry breaking by non-perturbative renormalization group
    Aoki, KI
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1998, (131): : 129 - 148
  • [37] Non-perturbative fixed points and renormalization group improved effective potential
    Dias, A. G.
    Gomez, J. D.
    Natale, A. A.
    Quinto, A. G.
    Ferrari, A. F.
    PHYSICS LETTERS B, 2014, 739 : 8 - 12
  • [38] Non-perturbative renormalization of lattice QCD.
    Rossi, GC
    NUCLEAR PHYSICS B, 1997, : 3 - 15
  • [39] Non-perturbative Renormalization in Truncated Yukawa Model
    V. A. Karmanov
    Few-Body Systems, 2016, 57 : 473 - 478
  • [40] Non-perturbative renormalization in lattice field theory
    Sint, S
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 94 : 79 - 94