NON-PERTURBATIVE RENORMALIZATION GROUP: BASIC PRINCIPLES AND SOME APPLICATIONS

被引:3
|
作者
Mouhanna, D. [1 ]
Delamotte, B. [1 ]
Kownacki, J. -P. [2 ]
Tissier, M. [1 ]
机构
[1] UPMC, LPTMC, CNRS, UMR 7600, F-75252 Paris 05, France
[2] Univ Cergy Pontoise, LPTM, CNRS, UMR 8089, F-95302 Cergy Pontoise, France
来源
MODERN PHYSICS LETTERS B | 2011年 / 25卷 / 12-13期
关键词
Non-perturbative renormalization group; frustrated magnets; polymerized phantom membranes; PINNED ELASTIC-SYSTEMS; CRITICAL EXPONENTS; PHASE-TRANSITIONS; HEISENBERG-ANTIFERROMAGNET; TRIANGULAR LATTICE; MONTE-CARLO; 2ND-ORDER TRANSITION; FIELD-THEORY; FLUCTUATIONS; MODEL;
D O I
10.1142/S0217984911026589
中图分类号
O59 [应用物理学];
学科分类号
摘要
The non-perturbative renormalization group (NPRG), in its modern form, constitutes an efficient framework to investigate the physics of systems whose long-distance behavior is dominated by strong fluctuations that are out of reach of perturbative approaches. We present here the basic principles underlying the NPRG and illustrate its power in the context of two longstanding problems of condensed matter and soft matter physics: the nature of the phase transition occuring in frustrated magnets in three dimensions and the phase diagram of polymerized phantom membranes.
引用
收藏
页码:873 / 889
页数:17
相关论文
共 50 条
  • [1] Applications of non-perturbative renormalization
    Heitger, J
    HIGH ENERGY PHYSICS, VOLS I AND II, 2001, : 1293 - 1298
  • [2] Introduction to the non-perturbative renormalization group and its recent applications
    Aoki, KI
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2000, 14 (12-13): : 1249 - 1326
  • [3] The non-perturbative renormalization group in the ordered phase
    Caillol, Jean-Michel
    NUCLEAR PHYSICS B, 2012, 855 (03) : 854 - 884
  • [4] Non-perturbative renormalization group for simple fluids
    Caillol, Jean-Michel
    MOLECULAR PHYSICS, 2006, 104 (12) : 1931 - 1950
  • [5] Non-perturbative renormalization for a renormalization group improved gauge action
    Aoki, S
    Burkhalter, R
    Fukugita, M
    Hashimoto, S
    Ide, K
    Ishizuka, N
    Iwasaki, Y
    Kanaya, K
    Kaneko, T
    Kuramashi, Y
    Lesk, V
    Okawa, M
    Taniguchi, Y
    Ukawa, A
    Yushié, T
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 : 780 - 782
  • [6] Perturbative versus non-perturbative renormalization
    Hariharakrishnan, S.
    Jentschura, U. D.
    Marian, I. G.
    Szabo, K.
    Nandori, I
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2024, 51 (08)
  • [7] Non-perturbative renormalization group approach to surface growth
    Dipartimento di Fisica, INFM Unit, University of Rome La Sapienza, I-00185 Rome, Italy
    不详
    不详
    不详
    Comput Phys Commun, (358-362):
  • [8] Wilsonian renormalization group in the functional non-perturbative approach
    Vacca, Gian Paolo
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17
  • [9] Non-perturbative quantum Galileon in the exact renormalization group
    Steinwachs, Christian F.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (04):
  • [10] Gaussian information bottleneck and the non-perturbative renormalization group
    Kline, Adam G.
    Palmer, Stephanie E.
    NEW JOURNAL OF PHYSICS, 2022, 24 (03):