Optimal Order Error Estimates for Discontinuous Galerkin Methods for the Wave Equation

被引:15
|
作者
Han, Weimin [1 ,2 ,3 ]
He, Limin [1 ,4 ]
Wang, Fei [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[3] Univ Iowa, Program Appl Math & Computat Sci, Iowa City, IA 52242 USA
[4] Inner Mongolia Univ Sci & Technol, Sch Sci, Baotou 014010, Inner Mongolia, Peoples R China
基金
中国国家自然科学基金;
关键词
Discontinuous Galerkin methods; Fully discrete approximation; Wave equation; Optimal order error estimates; FINITE-ELEMENT-METHOD; NUMERICAL-SOLUTION; HP-VERSION;
D O I
10.1007/s10915-018-0755-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive optimal order error estimates for spatially semi-discrete and fully discrete schemes to numerically solve the second-order wave equation. The numerical schemes are constructed with the discontinuous Galerkin (DG) discretization for the spatial variable and the centered second-order finite difference approximation for the temporal variable. Under appropriate regularity assumptions on the solution, the schemes are shown to enjoy the optimal order error bounds in terms of both the spatial mesh-size and the time-step. In Grote and Schotzau (J Sci Comput 40:257-272, 2009), a fully discrete DG scheme is studied with an explicit finite difference temporal discretization where a CFL condition is required on the mesh-size and the time-step, and optimal order error estimates are derived in the L2()-norm. In comparison, for our fully discrete DG schemes, we do not require a CFL condition on the mesh-size and the time-step, and our optimal order error estimates are derived for the H1()-like norm and the L2() norm. Numerical simulation results are reported to illustrate theoretically predicted convergence orders in the H1() and L2() norms.
引用
收藏
页码:121 / 144
页数:24
相关论文
共 50 条
  • [21] Discontinuous Galerkin for the wave equation: a simplified a priori error analysis
    Rezaei, Neda
    Saedpanah, Fardin
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (03) : 546 - 571
  • [22] AN OPTIMAL-ORDER ERROR ESTIMATE FOR THE DISCONTINUOUS GALERKIN METHOD
    RICHTER, GR
    MATHEMATICS OF COMPUTATION, 1988, 50 (181) : 75 - 88
  • [23] Optimal Error Estimates of the Local Discontinuous Galerkin Method and High-order Time Discretization Scheme for the Swift-Hohenberg Equation
    Zhou, Lingling
    Guo, Ruihan
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 93 (02)
  • [24] Optimal order a posteriori error estimates for a class of Runge-Kutta and Galerkin methods
    Akrivis, Georgios
    Makridakis, Charalambos
    Nochetto, Ricardo H.
    NUMERISCHE MATHEMATIK, 2009, 114 (01) : 133 - 160
  • [25] DISCONTINUOUS GALERKIN GALERKIN DIFFERENCES FOR THE WAVE EQUATION IN SECOND-ORDER FORM
    Banks, J. W.
    Buckner, B. Brett
    Hagstrom, T.
    Juhnke, K.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (02): : A1497 - A1526
  • [26] Optimal error estimates to smooth solutions of the central discontinuous Galerkin methods for nonlinear scalar conservation laws*
    JIAO, M. E. N. G. J. I. A. O.
    JIANG, Y. A. N.
    SHU, CHI-WANG
    ZHANG, M. E. N. G. P. I. N. G.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (04) : 1401 - 1435
  • [27] A POSTERIORI ERROR ESTIMATES FOR DISCONTINUOUS GALERKIN METHODS ON POLYGONAL AND POLYHEDRAL MESHES
    Cangiani, Andrea
    Dong, Zhaonan
    Georgoulis, Emmanuil H.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (05) : 2352 - 2380
  • [28] L∞ error estimates of discontinuous Galerkin methods for delay differential equations
    Li, Dongfang
    Zhang, Chengjian
    APPLIED NUMERICAL MATHEMATICS, 2014, 82 : 1 - 10
  • [29] A posteriori error estimates for local discontinuous Galerkin methods of linear elasticity
    Chen, Yun-Cheng
    Huang, Jian-Guo
    Xu, Yi-Feng
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2011, 45 (12): : 1857 - 1862
  • [30] ERROR ESTIMATES FOR GALERKIN REDUCED-ORDER MODELS OF THE SEMI-DISCRETE WAVE EQUATION
    Amsallem, D.
    Hetmaniuk, U.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (01): : 135 - 163