Finite volume methods and the equations of finite scale: A mimetic approach

被引:14
|
作者
Margolin, L. G. [1 ]
Shashkov, M. [2 ]
机构
[1] Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
关键词
mimetic approximation; finite volume; nonoscillatory methods;
D O I
10.1002/fld.1592
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
After introducing the general concept of mimetic differencing, we focus on two specific methodologies, nonoscillatory methods and finite Volume approximations. We provide a brief historical account of the development of these two mimetic strategies. We then describe the extension of these strategies to new techniques, a discrete operator calculus and implicit large eddy simulation. In each case, we provide illustrative examples. Further abstraction of these ideas leads to the concept of equations of finite scale, which we advocate as a more appropriate PDE model for constructing numerical algorithms. Published in 2007 by John Wiley & Sons, Ltd.
引用
收藏
页码:991 / 1002
页数:12
相关论文
共 50 条
  • [21] Mixed and hybrid finite element methods for convection-diffusion equations and their relationships with finite volume
    Fortin, M
    Mounim, AS
    CALCOLO, 2005, 42 (01) : 1 - 30
  • [22] Local flux mimetic finite difference methods
    Lipnikov, Konstantin
    Shashkov, Mikhail
    Yotov, Ivan
    NUMERISCHE MATHEMATIK, 2009, 112 (01) : 115 - 152
  • [23] Local flux mimetic finite difference methods
    Konstantin Lipnikov
    Mikhail Shashkov
    Ivan Yotov
    Numerische Mathematik, 2009, 112 : 115 - 152
  • [24] Mimetic finite difference methods in image processing
    Bazan, C.
    Abouali, M.
    Castillo, J.
    Blomgren, P.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2011, 30 (03): : 701 - 720
  • [25] Finite volume approach for finite strain consolidation
    Singh, Rakesh Pratap
    Ojha, Chandra Shekhar Prasad
    Singh, Mahendra
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2016, 40 (01) : 117 - 140
  • [26] A Mimetic Finite Volume Discretization Method for Reservoir Simulation
    Alpak, Faruk O.
    SPE JOURNAL, 2010, 15 (02): : 436 - 453
  • [27] Performance of Local Gauss Integration in Finite Element and Finite Volume Methods for the Navier-Stokes Equations
    Zhong, He
    Chen, Zhangxin
    HIGH PERFORMANCE COMPUTING AND APPLICATIONS, 2010, 5938 : 88 - +
  • [28] Mixed finite element-finite volume methods
    Zine Dine, Khadija
    Achtaich, Naceur
    Chagdali, Mohamed
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2010, 17 (03) : 385 - 410
  • [29] Finite volume methods for the computation of statistical solutions of the incompressible Euler equations
    Pares-Pulido, Carlos
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (05) : 3073 - 3108
  • [30] FAST FINITE VOLUME METHODS FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Wang, Hong
    Cheng, Aijie
    Wang, Kaixin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (05): : 1427 - 1441