Dynamical many-body localization in an integrable model

被引:22
|
作者
Keser, Aydin Cem [1 ]
Ganeshan, Sriram [1 ,2 ]
Refael, Gil [3 ]
Galitski, Victor [1 ,2 ,4 ]
机构
[1] Univ Maryland, Dept Phys, Condensed Matter Theory Ctr, College Pk, MD 20742 USA
[2] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[3] CALTECH, Dept Phys, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[4] Monash Univ, Sch Phys, Melbourne, Vic 3800, Australia
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
QUANTUM-STATISTICAL-MECHANICS; SOLVABLE MODEL; THERMALIZATION; TRANSITION; SPECTRUM; SYSTEMS; MOTION; CHAOS;
D O I
10.1103/PhysRevB.94.085120
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate dynamical many-body localization and delocalization in an integrable system of periodically-kicked, interacting linear rotors. The linear-in-momentum Hamiltonian makes the Floquet evolution operator analytically tractable for arbitrary interactions. One of the hallmarks of this model is that depending on certain parameters, it manifests both localization and delocalization in momentum space. We present a set of "emergent" integrals of motion, which can serve as a fundamental diagnostic of dynamical localization in the interacting case. We also propose an experimental scheme, involving voltage-biased Josephson junctions, to realize such many-body kicked models.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Many-Body Localization in One Dimension as a Dynamical Renormalization Group Fixed Point
    Vosk, Ronen
    Altman, Ehud
    PHYSICAL REVIEW LETTERS, 2013, 110 (06)
  • [32] Dynamical l-bits and persistent oscillations in Stark many-body localization
    Gunawardana, Thivan M.
    Buca, Berislav
    PHYSICAL REVIEW B, 2022, 106 (16)
  • [33] Dynamical many-body localization and delocalization in periodically driven closed quantum systems
    Haldar, Asmi
    Das, Arnab
    ANNALEN DER PHYSIK, 2017, 529 (07)
  • [34] Dynamics at the many-body localization transition
    Torres-Herrera, E. J.
    Santos, Lea F.
    PHYSICAL REVIEW B, 2015, 92 (01)
  • [35] Many-body localization with quasiperiodic driving
    Long, David M.
    Crowley, Philip J. D.
    Chandran, Anushya
    PHYSICAL REVIEW B, 2022, 105 (14)
  • [36] Symmetry constraints on many-body localization
    Potter, Andrew C.
    Vasseur, Romain
    PHYSICAL REVIEW B, 2016, 94 (22)
  • [37] Interferometric Probes of Many-Body Localization
    Serbyn, M.
    Knap, M.
    Gopalakrishnan, S.
    Papic, Z.
    Yao, N. Y.
    Laumann, C. R.
    Abanin, D. A.
    Lukin, M. D.
    Demler, E. A.
    PHYSICAL REVIEW LETTERS, 2014, 113 (14)
  • [38] Many-body localization phase transition
    Pal, Arijeet
    Huse, David A.
    PHYSICAL REVIEW B, 2010, 82 (17):
  • [39] Many-body localization proximity effect
    Nandkishore, Rahul
    PHYSICAL REVIEW B, 2015, 92 (24):
  • [40] Impact of geometry on many-body localization
    Wiater, Dariusz
    Zakrzewski, Jakub
    PHYSICAL REVIEW B, 2018, 98 (09)