Optical Conductivity of Two-Dimensional Silicon: Evidence of Dirac Electrodynamics

被引:35
|
作者
Grazianetti, Carlo [1 ]
De Rosa, Stefania [2 ]
Martella, Christian [1 ]
Targa, Paolo [3 ]
Codegoni, Davide [3 ]
Gori, Paola [4 ]
Pulci, Olivia [5 ,6 ]
Molle, Alessandro [1 ]
Lupi, Stefano [2 ]
机构
[1] CNR IMM Unit Agrate Brianza, Via C Olivetti 2, I-20864 Agrate Brianza, Italy
[2] Univ Roma La Sapienza, CNR IOM Dipartimento Fis, Ple Aldo Moro 2, I-00185 Rome, Italy
[3] STMicroelectronics, Via C Olivetti 2, I-20864 Agrate Brianza, Italy
[4] Univ Roma Tre, Dipartimento Ingn, Via Vasca Navale 79, I-00146 Rome, Italy
[5] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy
[6] INFN, Sez Roma Tor Vergata, Via Ric Sci 1, I-00133 Rome, Italy
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Two-dimensional; silicon; silicene; Al2O3(0001); optical conductivity; DFT calculations; AL2O3;
D O I
10.1021/acs.nanolett.8b03169
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The exotic electrodynamics properties of graphene come from the linearly dispersive electronic bands that host massless Dirac electrons. A similar behavior was predicted to manifest in freestanding silicene, the silicon counterpart of graphene, thereby envisaging a new route for silicon photonics. However, the access to silicene exploitation in photonics was hindered so far by the use of optically inappropriate substrates in experimentally realized silicene. Here we report on the optical conductivity of silicon nanosheets epitaxially grown on optically transparent Al2O3(0001) from a thickness of a few tens of nanometers down to the extreme two-dimensional (2D) limit. When a 2D regime is approached, a Dirac-like electrodynamics can be deduced from the observation of a low-energy optical conductivity feature owing to a silicene-based einterfacing to the substrate.
引用
收藏
页码:7124 / 7132
页数:9
相关论文
共 50 条
  • [41] TWO-DIMENSIONAL ELECTRODYNAMICS AND THE GLOBAL STRUCTURE OF SPACE
    MCHALE, G
    JAROSZKIEWICZ, GA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (11): : 2099 - 2104
  • [42] Equations of macroscopic electrodynamics for two-dimensional crystals
    Mikhailov, S. A.
    APL PHOTONICS, 2019, 4 (03)
  • [43] THE TWO-DIMENSIONAL LINEARIZED RETURN PROBLEMS OF ELECTRODYNAMICS
    Nurseitov, D. B.
    Shishlenin, M. A.
    Sholpanbaev, B. B.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2014, 11 : C145 - C155
  • [44] Carrier mobility of two-dimensional Dirac materials: the influence of optical phonon scattering
    Wang, Yingqi
    Wang, Zijian
    Cheng, Ting
    Liu, Zhirong
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 35 (23491-23501) : 23491 - 23501
  • [45] Effects of Dirac cone tilt in a two-dimensional Dirac semimetal
    Yang, Zhao-Kun
    Wang, Jing-Rong
    Liu, Guo-Zhu
    PHYSICAL REVIEW B, 2018, 98 (19)
  • [46] Dirac-Weyl fermions with arbitrary spin in two-dimensional optical superlattices
    Lan, Z.
    Goldman, N.
    Bermudez, A.
    Lu, W.
    Oehberg, P.
    PHYSICAL REVIEW B, 2011, 84 (16)
  • [47] Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon
    Vogt, Patrick
    De Padova, Paola
    Quaresima, Claudio
    Avila, Jose
    Frantzeskakis, Emmanouil
    Asensio, Maria Carmen
    Resta, Andrea
    Ealet, Benedicte
    Le Lay, Guy
    PHYSICAL REVIEW LETTERS, 2012, 108 (15)
  • [48] Two-dimensional optical micro-scanner on silicon technology
    Molar-Velazquez, Gabriela
    Renero-Carrillo, Francisco J.
    Calleja-Arriaga, Wilfrido
    OPTIK, 2010, 121 (09): : 843 - 846
  • [49] Optical conductivity in a simple model of a pseudogap state of a two-dimensional system
    Sadovskii, MV
    JETP LETTERS, 1999, 69 (06) : 483 - 489
  • [50] Exact diagonalization study of optical conductivity in the two-dimensional Hubbard model
    Tohyama, T
    Inoue, Y
    Tsutsui, K
    Maekawa, S
    PHYSICAL REVIEW B, 2005, 72 (04):