Asymptotic stability of the OSCV smoothing parameter selection

被引:2
|
作者
Yi, S [1 ]
机构
[1] Pukyong Natl Univ, Div Mat Sci, Pusan 608737, South Korea
关键词
cross-validation; one-sided cross-validation; nonparametric regression; optimal bandwidths;
D O I
10.1081/STA-100106061
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The smoothing parameter selection by the one-sided cross-validation (OSCV) method is completely automatic in that it does not require extra parameters estimation. Also it reduces the variability comparable to that of plug-in rules. In this paper we derive analytically the asymptotic variance of the smoothing parameter selected by OSCV. It shows the dependency of the stability on the one-sided kerenl and tells the possibility of the optimal one-sided kernel which minimizes the asymptotic variability.
引用
收藏
页码:2033 / 2044
页数:12
相关论文
共 50 条