A combinatorial approach to orthogonal exponentials

被引:8
|
作者
Iosevich, A [1 ]
Rudnev, M
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
关键词
D O I
10.1155/S1073792803208126
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
下载
收藏
页码:2671 / 2685
页数:15
相关论文
共 50 条
  • [41] Optimized metrics for orthogonal combinatorial CRISPR screens
    Cetin, Ronay
    Wegner, Martin
    Luwisch, Leah
    Saud, Sarada
    Achmedov, Tatjana
    Susser, Sebastian
    Vera-Guapi, Antonella
    Muller, Konstantin
    Matthess, Yves
    Quandt, Eva
    Schaubeck, Simone
    Beisel, Chase L. L.
    Kaulich, Manuel
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [42] Combinatorial Orthogonal Beamforming for Joint Processing and Transmission
    Lee, Hojae
    Kim, Seonghyun
    Lee, Sanghoon
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2014, 62 (02) : 625 - 637
  • [43] Some combinatorial constructions for optical orthogonal codes
    Yin, JX
    DISCRETE MATHEMATICS, 1998, 185 (1-3) : 201 - 219
  • [44] EXPONENTIALS OF NORMAL OPERATORS AND COMMUTATIVITY OF OPERATORS: A NEW APPROACH
    Mortad, Mohammed Hichem
    COLLOQUIUM MATHEMATICUM, 2011, 125 (01) : 1 - 6
  • [45] Generalization of matching extensions in graphs -: combinatorial interpretation of orthogonal and q-orthogonal polynomials
    Kyriakoussis, A
    Vamvakari, MG
    DISCRETE MATHEMATICS, 2005, 296 (2-3) : 199 - 209
  • [46] UNIFIED COMBINATORIAL CONSTRUCTIONS OF OPTIMAL OPTICAL ORTHOGONAL CODES
    Fan, Cuiling
    Momihara, Koji
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2014, 8 (01) : 53 - 66
  • [47] The combinatorial construction for a class of optimal optical orthogonal codes
    Tang, Y
    Yin, JX
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2002, 45 (10): : 1268 - 1275
  • [48] Application of Discrete Orthogonal Combinatorial Prediction in Crime Sites
    Hao Jianzhong
    Teng Yufa
    Zhang Mingxue
    Liu Gang
    Gao Wei
    PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2012, : 4268 - 4273
  • [49] The combinatorial construction for a class of optimal optical orthogonal codes
    Tang Yu
    Yin Jianxing
    Science in China Series A: Mathematics, 2002, 45 (10): : 1268 - 1275
  • [50] A combinatorial characterization of higher-dimensional orthogonal packing
    Fekete, SP
    Schepers, J
    MATHEMATICS OF OPERATIONS RESEARCH, 2004, 29 (02) : 353 - 368