Mutual phase-locking of microwave spin torque nano-oscillators

被引:727
|
作者
Kaka, S [1 ]
Pufall, MR
Rippard, WH
Silva, TJ
Russek, SE
Katine, JA
机构
[1] Natl Inst Stand & Technol, Div Electromagnet Technol, Boulder, CO 80305 USA
[2] Hitachi San Jose Res Ctr, San Jose, CA 95120 USA
关键词
D O I
10.1038/nature04035
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The spin torque(1,2) effect that occurs in nanometre-scale magnetic multilayer devices can be used to generate steady-state microwave signals in response to a d.c. electrical current(3-8). This establishes a new functionality for magneto-electronic structures that are more commonly used as magnetic field sensors and magnetic memory elements(9). The microwave power emitted from a single spin torque nano-oscillator (STNO) is at present typically less than 1 nW. To achieve a more useful power level ( on the order of microwatts), a device could consist of an array of phase coherent STNOs, in a manner analogous to arrays of Josephson junctions and larger semiconductor oscillators(10-12). Here we show that two STNOs in close proximity mutually phase-lock - that is, they synchronize, which is a general tendency of interacting nonlinear oscillator systems(13-15). The phase-locked state is distinct, characterized by a sudden narrowing of signal linewidth and an increase in power due to the coherence of the individual oscillators. Arrays of phase-locked STNOs could be used as nanometre-scale reference oscillators. Furthermore, phase control of array elements ( phased array) could lead to nanometre-scale directional transmitters and receivers for wireless communications.
引用
收藏
页码:389 / 392
页数:4
相关论文
共 50 条
  • [21] Spin-Torque and Spin-Hall Nano-Oscillators
    Chen, Tingsu
    Dumas, Randy K.
    Eklund, Anders
    Muduli, Pranaba K.
    Houshang, Afshin
    Awad, Ahmad A.
    Durrenfeld, Philipp
    Malm, B. Gunnar
    Rusu, Ana
    Akerman, Johan
    PROCEEDINGS OF THE IEEE, 2016, 104 (10) : 1919 - 1945
  • [22] Theory of mutual phase locking of spin-torque nanosized oscillators
    Slavin, A. N.
    Tiberkevich, V. S.
    PHYSICAL REVIEW B, 2006, 74 (10):
  • [23] Fractional Synchronization of Spin-Torque Nano-Oscillators
    Urazhdin, Sergei
    Tabor, Phillip
    Tiberkevich, Vasil
    Slavin, Andrei
    PHYSICAL REVIEW LETTERS, 2010, 105 (10)
  • [24] Spin torque nano-oscillators based on antiferromagnetic skyrmions
    Shen, Laichuan
    Xia, Jing
    Zhao, Guoping
    Zhang, Xichao
    Ezawa, Motohiko
    Tretiakov, Oleg A.
    Liu, Xiaoxi
    Zhou, Yan
    APPLIED PHYSICS LETTERS, 2019, 114 (04)
  • [25] Coupled Spin Torque Nano-Oscillators: Stability of Synchronization
    Beauvais, K.
    Palacios, A.
    Shaffer, R.
    Turtle, J.
    In, V.
    Longhini, P.
    INTERDISCIPLINARY TOPICS IN APPLIED MATHEMATICS, MODELING AND COMPUTATIONAL SCIENCE, 2015, 117 : 43 - 48
  • [26] Spin Torque Nano-Oscillators Directly Integrated on a MOSFET
    Kang, Doo Hyung
    Lee, Jaehyun
    Jeong, Woo Jin
    Shin, Mincheol
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2018, 17 (01) : 122 - 127
  • [27] Resonant Spin-Transfer-Torque Nano-Oscillators
    Sharma, Abhishek
    Tulapurkar, Ashwin A.
    Muralidharan, Bhaskaran
    PHYSICAL REVIEW APPLIED, 2017, 8 (06):
  • [28] Magnetic Skyrmion Spin-Torque Nano-Oscillators
    Guslienko, Konstantin Y.
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2020, 14 (05):
  • [29] Quantum coherence in spin-torque nano-oscillators
    Rezende, Sergio M.
    PHYSICAL REVIEW B, 2010, 81 (09)
  • [30] Gluing bifurcations in coupled spin torque nano-oscillators
    Turtle, James
    Beauvais, Katherine
    Shaffer, Richard
    Palacios, Antonio
    In, Visarath
    Emery, Teresa
    Longhini, Patrick
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (11)