The Mars system revealed by the Martian Moons eXploration mission

被引:8
|
作者
Ogohara, Kazunori [1 ]
Nakagawa, Hiromu [2 ]
Aoki, Shohei [3 ,4 ]
Kouyama, Toru [5 ]
Usui, Tomohiro [6 ]
Terada, Naoki [2 ]
Imamura, Takeshi [7 ]
Montmessin, Franck [8 ]
Brain, David [9 ]
Doressoundiram, Alain [10 ]
Gautier, Thomas [8 ]
Hara, Takuya [11 ]
Harada, Yuki [12 ]
Ikeda, Hitoshi [13 ]
Koike, Mizuho [14 ]
Leblanc, Francois [15 ]
Ramirez, Ramses [16 ,17 ,25 ]
Sawyer, Eric [18 ]
Seki, Kanako [19 ]
Spiga, Aymeric [20 ,21 ]
Vandaele, Ann Carine [22 ]
Yokota, Shoichiro [23 ]
Barucci, Antonella [10 ]
Kameda, Shingo [24 ]
机构
[1] Kyoto Sangyo Univ, Fac Sci, Kita Ku, Kyoto, Japan
[2] Tohoku Univ, Grad Sch Sci, Aoba Ku, 6-3 Aramaki Aza Aoba, Sendai, Miyagi, Japan
[3] Univ Liege, STAR Inst, LPAP, Allee 6 Aout,19C, B-4000 Liege, Belgium
[4] Royal Belgian Inst Space Aeron, 3 Ave Circulaire, B-1180 Brussels, Belgium
[5] Natl Inst Adv Ind Sci & Technol, Artificial Intelligence Res Ctr, Koto Ku, 2-3-6 Aomi, Tokyo, Japan
[6] JAXA, Dept Solar Syst Sci, Inst Space & Astronaut Sci, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525210, Japan
[7] Univ Tokyo, Grad Sch Frontier Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778561, Japan
[8] Sorbonne Univ, UVSQ UPSaclay, CNRS, LATMOS IPSL, Guyancourt, France
[9] LASP Univ Colorado, Boulder, CO USA
[10] Univ Paris, Univ PSL, Sorbonne Univ, LESIA,Observ Paris,CNRS, 5 Pl Jules Janssen, F-92195 Meudon, France
[11] Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA
[12] Kyoto Univ, Grad Sch Sci, Sakyo Ku, Kitashirakawaoiwake Cho, Kyoto 6068502, Japan
[13] Japan Aerosp Explorat Agcy, Res & Dev Directorate, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525210, Japan
[14] Hiroshima Univ, Grad Sch Adv Sci & Engn, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 7398526, Japan
[15] Sorbonne Univ, LATMOS CNRS, UVSQ, Paris, France
[16] Tokyo Inst Technol, Earth Life Sci Inst, Tokyo 1528550, Japan
[17] Space Sci Inst, Boulder, CO USA
[18] CNES, 18 Ave Edouard Belin, F-31400 Toulouse, France
[19] Univ Tokyo, Grad Sch Sci, Dept Earth & Planetary Sci, Bunkyo Ku, Hongo 7-3-1, Tokyo, Japan
[20] Sorbonne Univ, CNRS, Lab Meteorol Dynam,Ecole Polytech, Ecole Normale Super ENS,Inst Pierre Simon Laplace, Campus Pierre & Marie Curie BC99,4 Pl Jussieu, F-75005 Paris, France
[21] Inst Univ France, 1 Rue Descartes, F-75005 Paris, France
[22] Royal Belgian Inst Space Aeron, Ave Circulaire 3, B-1180 Brussels, Belgium
[23] Osaka Univ, Grad Sch Sci, Machikaneyama Cho, Toyonaka, Osaka, Japan
[24] Rikkyo Univ, 3-34-1 Nishi Ikebukuro, Tokyo 1718501, Japan
[25] Univ Cent Florida, Coll Sci, Dept Phys, 4111 Libra Dr,Phys Sci Bldg 430, Orlando, FL 32816 USA
来源
EARTH PLANETS AND SPACE | 2022年 / 74卷 / 01期
关键词
Mars; Mars system; Paleoclimate; Atmospheric escape; Water cycle; Dust cycle; Transport process; SOLAR-WIND INTERACTION; IONOSPHERIC PLASMA ESCAPE; ORBITER LASER ALTIMETER; WARMING EARLY MARS; ALLAN HILLS 84001; WATER-VAPOR; MAVEN OBSERVATIONS; ION ESCAPE; MAGNETIC RECONNECTION; ATMOSPHERIC ESCAPE;
D O I
10.1186/s40623-021-01417-0
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Japan Aerospace Exploration Agency (JAXA) plans a Phobos sample return mission (MMX: Martian Moons eXploration). In this study, we review the related works on the past climate of Mars, its evolution, and the present climate and weather to describe the scientific goals and strategies of the MMX mission regarding the evolution of the Martian surface environment. The MMX spacecraft will retrieve and return a sample of Phobos regolith back to Earth in 2029. Mars ejecta are expected to be accumulated on the surface of Phobos without being much shocked. Samples from Phobos probably contain all types of Martian rock from sedimentary to igneous covering all geological eras if ejecta from Mars could be accumulated on the Phobos surface. Therefore, the history of the surface environment of Mars can be restored by analyzing the returned samples. Remote sensing of the Martian atmosphere and monitoring ions escaping to space while the spacecraft is orbiting Mars in the equatorial orbit are also planned. The camera with multi-wavelength filters and the infrared spectrometer onboard the spacecraft can monitor rapid transport processes of water vapor, dust, ice clouds, and other species, which could not be traced by the previous satellites on the sun-synchronous polar orbit. Such time-resolved pictures of the atmospheric phenomena should be an important clue to understand both the processes of water exchange between the surface/underground reservoirs and the atmosphere and the drivers of efficient material transport to the upper atmosphere. The mass spectrometer with unprecedented mass resolution can observe ions escaping to space and monitor the atmospheric escape which has made the past Mars to evolve towards the cold and dry surface environment we know today. Together with the above two instruments, it can potentially reveal what kinds of atmospheric events can transport tracers (e.g., H2O) upward and enhance the atmospheric escape.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] Martian moons exploration MMX: sample return mission to Phobos elucidating formation processes of habitable planets
    Kiyoshi Kuramoto
    Yasuhiro Kawakatsu
    Masaki Fujimoto
    Akito Araya
    Maria Antonietta Barucci
    Hidenori Genda
    Naru Hirata
    Hitoshi Ikeda
    Takeshi Imamura
    Jörn Helbert
    Shingo Kameda
    Masanori Kobayashi
    Hiroki Kusano
    David J. Lawrence
    Koji Matsumoto
    Patrick Michel
    Hideaki Miyamoto
    Tomokatsu Morota
    Hiromu Nakagawa
    Tomoki Nakamura
    Kazunori Ogawa
    Hisashi Otake
    Masanobu Ozaki
    Sara Russell
    Sho Sasaki
    Hirotaka Sawada
    Hiroki Senshu
    Shogo Tachibana
    Naoki Terada
    Stephan Ulamec
    Tomohiro Usui
    Koji Wada
    Sei-ichiro Watanabe
    Shoichiro Yokota
    Earth, Planets and Space, 74
  • [22] TARGETING THE MARTIAN MOONS VIA DIRECT INSERTION INTO MARS' ORBIT
    Conte, Davide
    Spencer, David B.
    ASTRODYNAMICS 2015, 2016, 156 : 2389 - 2406
  • [24] PROJECT-2000 - A MANNED MISSION TO THE MOONS OF MARS
    SINGER, SF
    POLICY REVIEW, 1986, 38 : 50 - 54
  • [25] Covariance analysis of periodic and quasi-periodic orbits around Phobos with applications to the Martian Moons eXploration mission
    Edoardo Ciccarelli
    Nicola Baresi
    Astrodynamics, 2023, 7 : 363 - 379
  • [26] Covariance analysis of periodic and quasi-periodic orbits around Phobos with applications to the Martian Moons eXploration mission
    Ciccarelli, Edoardo
    Baresi, Nicola
    ASTRODYNAMICS, 2023, 7 (03) : 363 - 379
  • [27] Mars Exploration Rover mission
    Crisp, JA
    Adler, M
    Matijevic, JR
    Squyres, SW
    Arvidson, RE
    Kass, DM
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2003, 108 (E12)
  • [28] Human exploration of Mars: The Mars surface mission
    Hoffman, SJ
    Duke, MB
    Joosten, BK
    Knudson, WE
    SPACEFLIGHT MECHANICS 1999, VOL 102, PTS I AND II, 1999, 102 : 51 - 66
  • [29] Operation and performance of the Mars exploration rover imaging system on the Martian surface
    Maki, JN
    INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOL 1-4, PROCEEDINGS, 2005, : 930 - 936
  • [30] Curation protocol of Phobos sample returned by Martian Moons eXploration
    Fukai, Ryota
    Usui, Tomohiro
    Fujiya, Wataru
    Takano, Yoshinori
    Bajo, Ken-ichi
    Beck, Andrew
    Bonato, Enrica
    Chabot, Nancy L.
    Furukawa, Yoshihiro
    Genda, Hidenori
    Hibiya, Yuki
    Jourdan, Fred
    Kleine, Thorsten
    Koike, Mizuho
    Matsuoka, Moe
    Miura, Yayoi N.
    Moynier, Frederic
    Okazaki, Ryuji
    Russell, Sara S.
    Sumino, Hirochika
    Zolensky, Michael E.
    Sugahara, Haruna
    Tachibana, Shogo
    Sakamoto, Kanako
    Abe, Masanao
    Cho, Yuichiro
    Kuramoto, Kiyoshi
    METEORITICS & PLANETARY SCIENCE, 2024, 59 (02) : 321 - 337