Clinical and biological data integration for biomarker discovery

被引:12
|
作者
Sorani, Marco D. [1 ]
Ortmann, Ward A. [1 ]
Bierwagen, Erik P. [1 ]
Behrens, Timothy W. [1 ]
机构
[1] Genentech Inc, San Francisco, CA 94080 USA
关键词
GENOME-WIDE ASSOCIATION; GENE-EXPRESSION DATA; MICROARRAY DATA; RHEUMATOID-ARTHRITIS; METAANALYSIS; CHALLENGES; COMPLEX; DESIGN; ANNOTATION; RITUXIMAB;
D O I
10.1016/j.drudis.2010.06.005
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Biomarkers hold promise for increasing success rates of clinical trials. Biomarker discovery requires searching for associations across a spectrum of data. The field of biomedical data integration has made strides in developing management and analysis tools for structured biological data, but best practices are still evolving for the integration of high-throughput data with less structured clinical data. Integrated repositories are needed to support data analysis, storage and access. We describe a data integration strategy that implements a clinical and biological database and a wiki interface. We integrated parameters across clinical trials and associated genetic, gene expression and protein data. We provide examples to illustrate the utility of data integration to explore disease heterogeneity and develop predictive biomarkers.
引用
收藏
页码:741 / 748
页数:8
相关论文
共 50 条
  • [21] Instance Discovery and Schema Matching with Applications to Biological Deep Web Data Integration
    Liu, Tantan
    Wang, Fan
    Agrawal, Cagan
    DATA INTEGRATION IN THE LIFE SCIENCES, 2010, 6254 : 148 - 163
  • [22] Multi-omic data integration enables discovery of hidden biological regularities
    Ali Ebrahim
    Elizabeth Brunk
    Justin Tan
    Edward J. O'Brien
    Donghyuk Kim
    Richard Szubin
    Joshua A. Lerman
    Anna Lechner
    Anand Sastry
    Aarash Bordbar
    Adam M. Feist
    Bernhard O. Palsson
    Nature Communications, 7
  • [23] Multi-omic data integration enables discovery of hidden biological regularities
    Ebrahim, Ali
    Brunk, Elizabeth
    Tan, Justin
    O'Brien, Edward J.
    Kim, Donghyuk
    Szubin, Richard
    Lerman, Joshua A.
    Lechner, Anna
    Sastry, Anand
    Bordbar, Aarash
    Feist, Adam M.
    Palsson, Bernhard O.
    NATURE COMMUNICATIONS, 2016, 7
  • [24] Using Dual Networks for the Integration of Clinical and Biological Data.
    Guzzi, Pietro Hiram
    Tradigo, Giuseppe
    Veltri, Pierangelo
    2019 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2019, : 368 - 369
  • [25] Big Dreams With Big Data! Use of Clinical Informatics to Inform Biomarker Discovery
    Singh, Siddharth
    CLINICAL AND TRANSLATIONAL GASTROENTEROLOGY, 2019, 10
  • [26] Protein mass spectra data analysis for clinical biomarker discovery: a global review
    Roy, Pascal
    Truntzer, Caroline
    Maucort-Boulch, Delphine
    Jouve, Thomas
    Molinari, Nicolas
    BRIEFINGS IN BIOINFORMATICS, 2011, 12 (02) : 176 - 186
  • [27] Identifying interactions in omics data for clinical biomarker discovery using symbolic regression
    Christensen, Niels Johan
    Demharter, Samuel
    Machado, Meera
    Pedersen, Lykke
    Salvatore, Marco
    Stentoft-Hansen, Valdemar
    Iglesias, Miquel Triana
    BIOINFORMATICS, 2022, 38 (15) : 3749 - 3758
  • [28] Integration of High-Volume Molecular and Imaging Data for Composite Biomarker Discovery in the Study of Melanoma
    Moutselos, Konstantinos
    Maglogiannis, Ilias
    Chatziioannou, Aristotelis
    BIOMED RESEARCH INTERNATIONAL, 2014, 2014
  • [29] Network and Data Integration for Biomarker Signature Discovery via Network Smoothed T-Statistics
    Cun, Yupeng
    Froehlich, Holger
    PLOS ONE, 2013, 8 (09):
  • [30] Bayesian Biomarker Discovery for RNAseq Data
    Pour, Ali Foroughi
    Dalton, Lori A.
    ACM-BCB'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2018, : 603 - 604