Clinical and biological data integration for biomarker discovery

被引:12
|
作者
Sorani, Marco D. [1 ]
Ortmann, Ward A. [1 ]
Bierwagen, Erik P. [1 ]
Behrens, Timothy W. [1 ]
机构
[1] Genentech Inc, San Francisco, CA 94080 USA
关键词
GENOME-WIDE ASSOCIATION; GENE-EXPRESSION DATA; MICROARRAY DATA; RHEUMATOID-ARTHRITIS; METAANALYSIS; CHALLENGES; COMPLEX; DESIGN; ANNOTATION; RITUXIMAB;
D O I
10.1016/j.drudis.2010.06.005
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Biomarkers hold promise for increasing success rates of clinical trials. Biomarker discovery requires searching for associations across a spectrum of data. The field of biomedical data integration has made strides in developing management and analysis tools for structured biological data, but best practices are still evolving for the integration of high-throughput data with less structured clinical data. Integrated repositories are needed to support data analysis, storage and access. We describe a data integration strategy that implements a clinical and biological database and a wiki interface. We integrated parameters across clinical trials and associated genetic, gene expression and protein data. We provide examples to illustrate the utility of data integration to explore disease heterogeneity and develop predictive biomarkers.
引用
收藏
页码:741 / 748
页数:8
相关论文
共 50 条
  • [1] PATRI, a Genomics Data Integration Tool for Biomarker Discovery
    Ukmar, G.
    Melloni, G. E. M.
    Raddrizzani, L.
    Rossi, P.
    Di Bella, S.
    Pirchio, M. R.
    Vescovi, M.
    Leone, A.
    Callari, M.
    Cesarini, M.
    Somaschini, A.
    Della Vedova, G.
    Daidone, M. G.
    Pettenella, M.
    Isacchi, A.
    Bosotti, R.
    BIOMED RESEARCH INTERNATIONAL, 2018, 2018
  • [2] Integration of chemical and biological data in discovery informatics.
    Hartsough, DS
    Gschwend, DA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 : U303 - U303
  • [3] Integration and visualization of biological data of the brain for the knowledge discovery
    Mineta, Katsuhiko
    Ikeo, Kazuho
    Tanaka, Yuzuru
    Gojobori, Takashi
    GENES & GENETIC SYSTEMS, 2006, 81 (06) : 460 - 460
  • [4] DeepKEGG: a multi-omics data integration framework with biological insights for cancer recurrence prediction and biomarker discovery
    Lan, Wei
    Liao, Haibo
    Chen, Qingfeng
    Zhu, Lingzhi
    Pan, Yi
    Chen, Yi-Ping Phoebe
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)
  • [5] Biomarker discovery in biological fluids
    Gao, J
    Garulacan, LA
    Storm, SM
    Opiteck, GJ
    Dubaquie, Y
    Hefta, SA
    Dambach, DM
    Dongre, AR
    METHODS, 2005, 35 (03) : 291 - 302
  • [6] Integration of genomic, biological, and chemical data in drug discovery.
    Laz, T
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 224 : U351 - U352
  • [7] Incorporating clinical information in proteomic data analysis for biomarker discovery
    Zhang, Z.
    White, C.
    Chan, D.
    MOLECULAR & CELLULAR PROTEOMICS, 2005, 4 (08) : S169 - S169
  • [8] Fungal biomarker discovery by integration of classifiers
    João Pedro Saraiva
    Marcus Oswald
    Antje Biering
    Daniela Röll
    Cora Assmann
    Tilman Klassert
    Markus Blaess
    Kristin Czakai
    Ralf Claus
    Jürgen Löffler
    Hortense Slevogt
    Rainer König
    BMC Genomics, 18
  • [9] Fungal biomarker discovery by integration of classifiers
    Saraiva, Joao Pedro
    Oswald, Marcus
    Biering, Antje
    Roell, Daniela
    Assmann, Cora
    Klassert, Tilman
    Blaess, Markus
    Czakai, Kristin
    Claus, Ralf
    Loeffler, Juergen
    Slevogt, Hortense
    Koenig, Rainer
    BMC GENOMICS, 2017, 18 : 601
  • [10] Integration of clinical and biological data in clinical practice using bioinformatics
    Coltell, Oscar
    Arregui, Maria
    Fabregat, Antonio
    Portoles, Olga
    REVISTA MEDICA DE CHILE, 2008, 136 (05) : 645 - 652