Discovery of Pinostrobin as a Melanogenic Agent in cAMP/PKA and p38 MAPK Signaling Pathway

被引:17
|
作者
Yoon, Jeong-Hyun [1 ]
Youn, Kumju [2 ]
Jun, Mira [1 ,2 ,3 ]
机构
[1] Dong A Univ, Grad Sch, Dept Hlth Sci, Busan 49315, South Korea
[2] Dong A Univ, Dept Food Sci & Nutr, Busan 49315, South Korea
[3] Dong A Univ, Ctr Food & Bio Innovat, Busan 49315, South Korea
关键词
melanogenesis; pinostrobin; MITF; melanogenesis-related enzyme; cAMP; PKA; p38; INHIBITS MELANOGENESIS; TRANSCRIPTION FACTOR; MELANOMA-CELLS; TYROSINASE; CATENIN; MITF; SKIN; MELANOCYTES; NARINGENIN; MECHANISMS;
D O I
10.3390/nu14183713
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Melanogenesis is the process of melanin synthesis to protect the skin against ultraviolet radiation and other external stresses. The loss of skin pigmentation is closely related to depigmented skin disorders. The melanogenic effects of pinostrobin, an active flavanone found in honey, were evaluated. B16F10 cells were used for melanin content, tyrosinase activity, and the expression of melanogenesis-related markers. Moreover, computational simulations were performed to predict docking and pharmacokinetics. Pinostrobin increased melanin levels and tyrosinase activity by stimulating the expression of melanogenic regulatory factors including tyrosinase, tyrosinase-related protein (TRP) 1 and microphthalmia transcription factor (MITF). Specifically, the phosphorylation of cAMP response element binding (CREB) involved in the MITF activation was augmented by pinostrobin. Moreover, the compound upregulated the beta-catenin by cAMP/PKA-mediated GSK-3 beta inactivation. Co-treatment with a PKA inhibitor, inhibited melanin production, tyrosinase activity, and expression of MITF, p-CREB, p-GSK-3 beta and p-beta-catenin, demonstrating that pinostrobin-stimulated melanogenesis was closely related to cAMP/PKA signaling pathway. Furthermore, the combination of pinostrobin and a specific p38 inhibitor, showed that MITF upregulation by pinostrobin was partly associated with the p38 signaling pathway. Docking simulation exhibited that the oxygen group at C-4 and the hydroxyl group at C-5 of pinostrobin may play an essential role in melanogenesis. In silico analysis revealed that pinostrobin had the optimal pharmacokinetic profiles including gastrointestinal absorption, skin permeability, and inhibition of cytochrome (CYP) enzymes. From the present results, it might be suggested that pinostrobin could be useful as a potent and safe melanogenic agent in the depigmentation disorder, vitiligo.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Hydrogen suppresses oxidative stress by inhibiting the p38 MAPK signaling pathway in preeclampsia
    Guo, Lili
    Liu, Ming
    Duan, Tao
    ADVANCES IN CLINICAL AND EXPERIMENTAL MEDICINE, 2023, 32 (03): : 357 - 367
  • [22] p38α MAPK participates in the signaling pathway for proplatelet formation in murine megakaryocytes.
    Kojima, H
    Kasama, E
    Mukai, HY
    Nagasawa, T
    Sudo, T
    BLOOD, 2001, 98 (11) : 794A - 794A
  • [23] Activation and Clinical Significance of p38 MAPK Signaling Pathway in Patients With Severe Trauma
    Wang, Yi Xin
    Xu, Xin Yun
    Su, Wen Li
    Wang, Qiang
    Zhu, Wen Xian
    Chen, Fen
    Jin, Ge
    Liu, Yu Jian
    Li, Yi Dong
    Sun, Yan Ping
    Gao, Wen Chao
    Ruan, Can Ping
    JOURNAL OF SURGICAL RESEARCH, 2010, 161 (01) : 119 - 125
  • [24] IFN-γ Elicits Macrophage Autophagy via the p38 MAPK Signaling Pathway
    Matsuzawa, Takeshi
    Kim, Bae-Hoon
    Shenoy, Avinash R.
    Kamitani, Shigeki
    Miyake, Masami
    MacMicking, John D.
    JOURNAL OF IMMUNOLOGY, 2012, 189 (02): : 813 - 818
  • [25] Regulation of Muscle Stem Cell Functions: A Focus on the p38 MAPK Signaling Pathway
    Segales, Jessica
    Perdiguero, Eusebio
    Munoz-Canoves, Pura
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2016, 4
  • [26] Suppression of Cartilage Degradation by Zingerone Involving the p38 and JNK MAPK Signaling Pathway
    Ruangsuriya, Jetsada
    Budprom, Piyaporn
    Viriyakhasem, Nawarat
    Kongdang, Patiwat
    Chokchaitaweesuk, Chatchadawalai
    Sirikaew, Nutnicha
    Chomdej, Siriwadee
    Nganvongpanit, Korakot
    Ongchai, Siriwan
    PLANTA MEDICA, 2017, 83 (3-4) : 268 - 276
  • [27] Crosstalk between p38 MAPK and GR Signaling
    Zeyen, Lisa
    Seternes, Ole Morten
    Mikkola, Ingvild
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (06)
  • [28] Novel strategies for inhibition of the p38 MAPK pathway
    Zhang, Jiyan
    Shen, Beifen
    Lin, Anning
    TRENDS IN PHARMACOLOGICAL SCIENCES, 2007, 28 (06) : 286 - 295
  • [29] p38 MAPK, microglial signaling, and neuropathic pain
    Ji, Ru-Rong
    Suter, Marc R.
    MOLECULAR PAIN, 2007, 3
  • [30] The MAPK p38 pathway controls TNF synthesis
    Andy Clark
    Arthritis Research & Therapy, 3 (1)