From Points to Parts: 3D Object Detection From Point Cloud With Part-Aware and Part-Aggregation Network

被引:486
|
作者
Shi, Shaoshuai [1 ]
Wang, Zhe [2 ]
Shi, Jianping [2 ]
Wang, Xiaogang [1 ]
Li, Hongsheng [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
[2] SenseTime Res, Beijing, Peoples R China
关键词
3D object detection; point cloud; part location; LiDAR; convolutional neural network; autonomous driving;
D O I
10.1109/TPAMI.2020.2977026
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D object detection from LiDAR point cloud is a challenging problem in 3D scene understanding and has many practical applications. In this paper, we extend our preliminary work PointRCNN to a novel and strong point-cloud-based 3D object detection framework, the part-aware and aggregation neural network (Part-A(2) net). The whole framework consists of the part-aware stage and the part-aggregation stage. First, the part-aware stage for the first time fully utilizes free-of-charge part supervisions derived from 3D ground-truth boxes to simultaneously predict high quality 3D proposals and accurate intra-object part locations. The predicted intra-object part locations within the same proposal are grouped by our new-designed RoI-aware point cloud pooling module, which results in an effective representation to encode the geometry-specific features of each 3D proposal. Then the part-aggregation stage learns to re-score the box and refine the box location by exploring the spatial relationship of the pooled intra-object part locations. Extensive experiments are conducted to demonstrate the performance improvements from each component of our proposed framework. Our Part-A(2) net outperforms all existing 3D detection methods and achieves new state-of-the-art on KITTI 3D object detection dataset by utilizing only the LiDAR point cloud data.
引用
收藏
页码:2647 / 2664
页数:18
相关论文
共 50 条
  • [31] IMAM: Incorporating Multiple Attention Mechanisms for 3D Object Detection from Point Cloud
    Zhou, Jing
    Wu, Han
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VII, 2023, 14260 : 112 - 123
  • [32] Pillar-Based 3D Object Detection from Point Cloud with Multiattention Mechanism
    Li X.
    Liang B.
    Huang J.
    Peng Y.
    Yan Y.
    Li J.
    Shang W.
    Wei W.
    Wireless Communications and Mobile Computing, 2023, 2023
  • [33] Transfer Learning Based Semantic Segmentation for 3D Object Detection from Point Cloud
    Imad, Muhammad
    Doukhi, Oualid
    Lee, Deok-Jin
    SENSORS, 2021, 21 (12)
  • [34] Learning Part Boundaries from 3D Point Clouds
    Loizou, Marios
    Averkiou, Melinos
    Kalogerakis, Evangelos
    COMPUTER GRAPHICS FORUM, 2020, 39 (05) : 183 - 195
  • [35] LSNet: Learned Sampling Network for 3D Object Detection from Point Clouds
    Wang, Mingming
    Chen, Qingkui
    Fu, Zhibing
    REMOTE SENSING, 2022, 14 (07)
  • [36] GRNet: Geometric relation network for 3D object detection from point clouds
    Li, Ying
    Ma, Lingfei
    Tan, Weikai
    Sun, Chen
    Cao, Dongpu
    Li, Jonathan
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 165 : 43 - 53
  • [37] Efficient 3D Object Recognition from Cluttered Point Cloud
    Li, Wei
    Cheng, Hongtai
    Zhang, Xiaohua
    SENSORS, 2021, 21 (17)
  • [38] Stereo Point Cloud Refinement for 3D Object Detection
    Liu, Wangchao
    Wang, Teng
    Wang, Yang
    Zhang, Xiangyu
    Lou, Xin
    2021 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS 2021) & 2021 IEEE CONFERENCE ON POSTGRADUATE RESEARCH IN MICROELECTRONICS AND ELECTRONICS (PRIMEASIA 2021), 2021, : 61 - 64
  • [39] A Lightweight Model for 3D Point Cloud Object Detection
    Li, Ziyi
    Li, Yang
    Wang, Yanping
    Xie, Guangda
    Qu, Hongquan
    Lyu, Zhuoyang
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [40] 3D object detection in voxelized point cloud scene
    Li Rui-long
    Wu Chuan
    Zhu Ming
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2022, 37 (10) : 1355 - 1363