Characterizing a proton beam scanning system for Monte Carlo dose calculation in patients

被引:50
|
作者
Grassberger, C. [1 ,2 ]
Lomax, Anthony [2 ]
Paganetti, H. [1 ]
机构
[1] Massachusetts Gen Hosp, Dept Radiat Oncol, Boston, MA 02114 USA
[2] Harvard Univ, Sch Med, Boston, MA 02114 USA
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2015年 / 60卷 / 02期
关键词
active scanning proton therapy; Monte Carlo simulation; patient dose calculation; RANGE UNCERTAINTIES; THERAPY; TOPAS;
D O I
10.1088/0031-9155/60/2/633
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The presented work has two goals. First, to demonstrate the feasibility of accurately characterizing a proton radiation field at treatment head exit for Monte Carlo dose calculation of active scanning patient treatments. Second, to show that this characterization can be done based on measured depth dose curves and spot size alone, without consideration of the exact treatment head delivery system. This is demonstrated through calibration of a Monte Carlo code to the specific beam lines of two institutions, Massachusetts General Hospital (MGH) and Paul Scherrer Institute (PSI). Comparison of simulations modeling the full treatment head at MGH to ones employing a parameterized phase space of protons at treatment head exit reveals the adequacy of the method for patient simulations. The secondary particle production in the treatment head is typically below 0.2% of primary fluence, except for low-energy electrons (<0.6 MeV for 230 MeV protons), whose contribution to skin dose is negligible. However, there is significant difference between the two methods in the low-dose penumbra, making full treatment head simulations necessary to study out-of-field effects such as secondary cancer induction. To calibrate the Monte Carlo code to measurements in a water phantom, we use an analytical Bragg peak model to extract the range-dependent energy spread at the two institutions, as this quantity is usually not available through measurements. Comparison of the measured with the simulated depth dose curves demonstrates agreement within 0.5 mm over the entire energy range. Subsequently, we simulate three patient treatments with varying anatomical complexity (liver, head and neck and lung) to give an example how this approach can be employed to investigate site-specific discrepancies between treatment planning system and Monte Carlo simulations.
引用
收藏
页码:633 / 645
页数:13
相关论文
共 50 条
  • [1] 'End to end' validation of a Monte Carlo code for independent dose calculation in a proton pencil beam scanning system
    Fracchiolla, F.
    Lorentini, S.
    Widesott, L.
    Farace, P.
    Schwarz, M.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2015, 115 : S78 - S79
  • [2] Clinical validation of Monte Carlo dose calculation for pencil beam scanning proton therapy.
    Widesott, L.
    Lorentini, S.
    Fracchiolla, F.
    Farace, P.
    Schwarz, M.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S45 - S46
  • [3] Application of Monte Carlo Simulation for Treatment Planning System Commissioning and Dose Calculation for a Pencil Beam Scanning Proton Therapy System
    Hu, H.
    Liu, H.
    Jia, Y.
    Zheng, Y.
    Ding, S.
    Wang, B.
    Li, Y.
    Huang, X.
    Li, Z.
    [J]. MEDICAL PHYSICS, 2022, 49 (06) : E860 - E860
  • [4] Monte Carlo Computation of the Effective Dose in Scanning Beam Proton Therapy
    Mirkovic, D.
    Titt, U.
    Sawakuchi, G.
    Zhang, X.
    Li, Y.
    Mohan, R.
    [J]. MEDICAL PHYSICS, 2009, 36 (06)
  • [5] Monte Carlo Dose Verification of Pencil Beam Scanning Proton Therapy
    Giantsoudi, D.
    Clasie, B.
    Grassberger, C.
    Dowdell, S.
    Depauw, N.
    Madden, T.
    Kooy, H.
    Paganetti, H.
    [J]. MEDICAL PHYSICS, 2013, 40 (06)
  • [6] Characterization and validation of a Monte Carlo code for independent dose calculation in proton therapy treatments with pencil beam scanning
    Fracchiolla, F.
    Lorentini, S.
    Widesott, L.
    Schwarz, M.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (21): : 8601 - 8619
  • [7] Pseudo Proton Radiography Beam Validation of Monte Carlo Dose Calculation in Two Pencil Beam Scanning Treatment Planning Systems
    Chang, C.
    Zhou, J.
    Yang, X.
    Dhabaan, A.
    Zhang, R.
    Liu, T.
    McDonald, M.
    Langen, K.
    Lin, L.
    [J]. MEDICAL PHYSICS, 2019, 46 (06) : E592 - E592
  • [8] Dose Comparison between Proton Pencil Beam and Monte Carlo Dose Calculation Algorithm in Lung Cancer Patients
    Maes, D.
    Bowen, S. R.
    Fung, A.
    Saini, J.
    Bloch, C.
    Egan, A.
    Zeng, J.
    Rengan, R.
    Wong, T. P.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2017, 99 (02): : E694 - E694
  • [9] Searching for Practical Monte Carlo Dose Calculation Parameters of Line-Scanning Proton Beam Therapy in a Commercial Treatment Planning System
    Kim, H.
    Chung, K.
    Han, Y.
    Park, W.
    Park, H.
    Lim, D.
    Choi, D.
    [J]. MEDICAL PHYSICS, 2022, 49 (06) : E872 - E873
  • [10] Clinical implementation of full Monte Carlo dose calculation in proton beam therapy
    Paganetti, Harald
    Jiang, Hongyu
    Parodi, Katia
    Slopsema, Roelf
    Engelsman, Martijn
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2008, 53 (17): : 4825 - 4853