Singular value decomposition of the longitudinal ray transform of vector fields in a ball in cone beam coordinates

被引:0
|
作者
Kazantsev, Sergey G. [1 ]
机构
[1] Sobolev Inst Math, 4 Acad Koptyug Prosp, Novosibirsk 630090, Russia
关键词
longitudinal cone-beam transform; singular value decomposition; Clebsh-Gordan coefficient; bipolar spherical harmonics; spherical convolution of Hilbert type; TOMOGRAPHIC RECONSTRUCTION; CONVOLUTION; EXPANSIONS; FORMULAS;
D O I
10.1088/1361-6420/abec1e
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An analytical singular value decomposition (SVD) of the longitudinal cone-beam transform of solenoidal vector fields in the ball is proposed and described in detail. We exploit the solenoidal vector fields H-n+1,m((n)), B-n+1-2k,m((n)) and C-n-2k,m((n)) constructed by Derevtsov, Kazantsev and Schuster in (2007 J. Inverse Ill-Posed Problems 15 173-185). Our study technique also corresponds to the work Kazantsev (2015 J. Inverse Ill-Posed Problems 23 173-185) in which the scalar case was considered. The calculations use expansions in orthogonal bipolar spherical harmonics. Also the spherical convolution operator Hilbert type S, coupling integrals of vector spherical harmonics and Clebsch-Gordan coefficients are involved in our study. The exact formulas for the corresponding singular values sigma(H-n+1,m((n))), sigma(B-n+1-2k,m((n))) and sigma(C-n-2k,m((n))) are obtained and their asymptotic for n -> infinity is studied.
引用
收藏
页数:35
相关论文
共 50 条
  • [41] A hybrid watermarking scheme using contourlet transform and singular value decomposition
    Narasimhulul, C. Venkata
    Prasad, K. Satya
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2010, 10 (09): : 12 - 17
  • [42] Singular value decomposition combined with wavelet transform for LCD defect detection
    Wang, Jing-Wein
    Chen, Wen-Yuan
    Lee, Jiann-Shu
    ELECTRONICS LETTERS, 2012, 48 (05) : 266 - U1560
  • [43] Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography
    Derevtsov, Evgeny Y.
    Efimov, Anton V.
    Louis, Alfred K.
    Schuster, Thomas
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2011, 19 (4-5): : 689 - 715
  • [44] Gray Image Watermarking using Slant Transform, Lifting Wavelet Transform and Singular Value Decomposition
    Koju, Roshan
    Joshi, Shashidhar Ram
    2016 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN), 2016, : 472 - 477
  • [45] A New Support Vector Compression Method Based on Singular Value Decomposition
    Yoon, Sang-Hun
    Lyuh, Chun-Gi
    Chun, Ik-Jae
    Suk, Jung-Hee
    Roh, Tae Moon
    ETRI JOURNAL, 2011, 33 (04) : 652 - 655
  • [46] Rectangular Coordinates State Estimation of Electrical Power System Using Singular Value Decomposition
    Rakpenthai, C.
    Uatrongjit, S.
    2009 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1-3, 2009, : 131 - +
  • [47] Vector extrapolation applied to truncated singular value decomposition and truncated iteration
    Bouhamidi, A.
    Jbilou, K.
    Reichel, L.
    Sadok, H.
    Wang, Z.
    JOURNAL OF ENGINEERING MATHEMATICS, 2015, 93 (01) : 99 - 112
  • [48] Vector extrapolation applied to truncated singular value decomposition and truncated iteration
    A. Bouhamidi
    K. Jbilou
    L. Reichel
    H. Sadok
    Z. Wang
    Journal of Engineering Mathematics, 2015, 93 : 99 - 112
  • [49] n-Mode Singular Vector Selection in Higher-Order Singular Value Decomposition
    Inoue, Kohei
    Urahama, Kiichi
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2008, E91A (11) : 3380 - 3384
  • [50] A hybrid domain-based watermarking for vector maps utilizing a complementary advantage of discrete fourier transform and singular value decomposition
    Qu, Chengyi
    Du, Jinglong
    Xi, Xu
    Tian, Huimin
    Zhang, Jie
    COMPUTERS & GEOSCIENCES, 2024, 183