Singular value decomposition of the longitudinal ray transform of vector fields in a ball in cone beam coordinates

被引:0
|
作者
Kazantsev, Sergey G. [1 ]
机构
[1] Sobolev Inst Math, 4 Acad Koptyug Prosp, Novosibirsk 630090, Russia
关键词
longitudinal cone-beam transform; singular value decomposition; Clebsh-Gordan coefficient; bipolar spherical harmonics; spherical convolution of Hilbert type; TOMOGRAPHIC RECONSTRUCTION; CONVOLUTION; EXPANSIONS; FORMULAS;
D O I
10.1088/1361-6420/abec1e
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An analytical singular value decomposition (SVD) of the longitudinal cone-beam transform of solenoidal vector fields in the ball is proposed and described in detail. We exploit the solenoidal vector fields H-n+1,m((n)), B-n+1-2k,m((n)) and C-n-2k,m((n)) constructed by Derevtsov, Kazantsev and Schuster in (2007 J. Inverse Ill-Posed Problems 15 173-185). Our study technique also corresponds to the work Kazantsev (2015 J. Inverse Ill-Posed Problems 23 173-185) in which the scalar case was considered. The calculations use expansions in orthogonal bipolar spherical harmonics. Also the spherical convolution operator Hilbert type S, coupling integrals of vector spherical harmonics and Clebsch-Gordan coefficients are involved in our study. The exact formulas for the corresponding singular values sigma(H-n+1,m((n))), sigma(B-n+1-2k,m((n))) and sigma(C-n-2k,m((n))) are obtained and their asymptotic for n -> infinity is studied.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Singular value decomposition for the cone-beam transform in the ball
    Kazantsev, Sergey G.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2015, 23 (02): : 173 - 185
  • [2] THE X-RAY TRANSFORM - SINGULAR VALUE DECOMPOSITION AND RESOLUTION
    MAASS, P
    INVERSE PROBLEMS, 1987, 3 (04) : 729 - 741
  • [3] The Singular Value Decomposition of the Operators of the Dynamic Ray Transforms Acting on 2D Vector Fields
    Polyakova, Anna P.
    Svetov, Ivan E.
    Hahn, Bernadette N.
    NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS, PT II, 2020, 11974 : 446 - 453
  • [4] Singular value decomposition for longitudinal, transverse and mixed ray transforms of 2D tensor fields
    Polyakova, Anna P.
    Svetov, Ivan E.
    INVERSE PROBLEMS, 2023, 39 (10)
  • [5] Sparse view cone beam X-ray luminescence tomography based on truncated singular value decomposition
    Gao, Peng
    Rong, Junyan
    Pu, Huangsheng
    Liu, Tianshuai
    Zhang, Wenli
    Zhang, Xiaofeng
    Lu, Hongbing
    OPTICS EXPRESS, 2018, 26 (18): : 23233 - 23250
  • [6] VECTOR FIELDS FOR MEAN VALUE COORDINATES
    Lee, S. L.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 40 (06) : 2437 - 2450
  • [7] SINGULAR VALUE DECOMPOSITION OF THE NORMAL RADON TRANSFORM OF 3D TENSOR FIELDS
    Polyakova, A. P.
    Svetov, I. E.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2022, 10 (04): : 107 - 124
  • [8] Singular value decomposition for the truncated Hilbert transform
    Katsevich, A.
    INVERSE PROBLEMS, 2010, 26 (11)
  • [9] Improvement on singular value decomposition vector quantization
    Saito, Takahiro
    Komatsu, Takashi
    Harashima, Hiroshi
    Electronics and Communications in Japan, Part I: Communications (English translation of Denshi Tsushin Gakkai Ronbunshi), 1990, 73 (02): : 11 - 20
  • [10] Shape classification based on singular value decomposition transform
    SHAABAN Zyada
    ARIF Thawara
    BABA Samia
    KREKOR Lala
    重庆邮电大学学报(自然科学版), 2009, 21 (02) : 246 - 252