ON SKEW LAPLACIAN SPECTRA AND SKEW LAPLACIAN ENERGY OF DIGRAPHS

被引:0
|
作者
Ganie, Hilal [1 ]
Chat, Bilal [2 ]
Pirzada, S. [1 ]
机构
[1] Univ Kashmir, Dept Math, Srinagar, Jammu & Kashmir, India
[2] Cent Univ Kashmir, Dept Math, Srinagar, Jammu & Kashmir, India
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2019年 / 43卷 / 01期
关键词
Digraphs; skew Laplacian matrix; skew Laplacian spectrum; skew Laplacian energy; EIGENVALUES; GRAPH;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a simple digraph with n vertices, m arcs having skew Laplacian eigenvalues nu(1), nu(2), ... , nu(n-1), nu(n) = 0. The skew Laplacian energy SLE(D) of a digraph D is defined as SLE(D) = Sigma(n)(i=1) vertical bar nu(i vertical bar). We obtain upper and lower bounds for SLE(D), which improves some previously known bounds. We also show that every even positive integer is indeed the skew Laplacian energy of some digraph.
引用
收藏
页码:87 / 98
页数:12
相关论文
共 50 条
  • [21] Bounds for the signless Laplacian energy of digraphs
    Weige Xi
    Ligong Wang
    Indian Journal of Pure and Applied Mathematics, 2017, 48 : 411 - 421
  • [22] Coordination in multiagent systems and Laplacian spectra of digraphs
    Chebotarev, P. Yu.
    Agaev, R. P.
    AUTOMATION AND REMOTE CONTROL, 2009, 70 (03) : 469 - 483
  • [23] Bounds for the skew Laplacian spectral radius of oriented graphs
    Chat, Bilal A.
    Ganie, Hilal A.
    Pirzada, S.
    CARPATHIAN JOURNAL OF MATHEMATICS, 2019, 35 (01) : 31 - 40
  • [24] EXTREMAL SKEW ENERGY OF DIGRAPHS WITH NO EVEN CYCLES
    Li, J.
    Li, X.
    Lian, H.
    TRANSACTIONS ON COMBINATORICS, 2014, 3 (01) : 37 - 49
  • [25] SKEW EQUIENERGETIC DIGRAPHS
    Ramane, Harishchandra S.
    Nandeesh, K. Channegowda
    Gutman, Ivan
    Li, Xueliang
    TRANSACTIONS ON COMBINATORICS, 2016, 5 (01) : 15 - 23
  • [26] Further results on digraphs with completely real Laplacian spectra
    Li, Hong-Hai
    Su, Li
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 265 : 630 - 634
  • [27] SKEW-SPECTRA AND SKEW ENERGY OF VARIOUS PRODUCTS OF GRAPHS
    Li, X.
    Lian, H.
    TRANSACTIONS ON COMBINATORICS, 2015, 4 (02) : 13 - 21
  • [28] On the Laplacian spread of digraphs
    Barrett, Wayne
    Cameron, Thomas R.
    Evans, Emily
    Hall, H. Tracy
    Kempton, Mark
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 664 : 126 - 146
  • [29] 3-Regular digraphs with optimum skew energy
    Gong, Shi-Cai
    Xu, Guang-Hui
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (03) : 465 - 471
  • [30] Extremal Laplacian energy of directed trees, unicyclic digraphs and bicyclic digraphs
    Yang, Xiuwen
    Wang, Ligong
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 366