Integrity monitoring for precise orbit determination of LEO satellites

被引:11
|
作者
Wang, Kan [1 ,2 ,3 ]
El-Mowafy, Ahmed [1 ]
Rizos, Chris [4 ]
机构
[1] Curtin Univ, Sch Earth & Planetary Sci, Perth, WA, Australia
[2] Chinese Acad Sci, Natl Time Serv Ctr, Xian, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
[4] UNSW, Sch Civil & Environm Engn, Sydney, NSW, Australia
基金
澳大利亚研究理事会;
关键词
LEO; POD; Integrity monitoring; GPS; Protection level; SERVICE; CLOCK; GNSS;
D O I
10.1007/s10291-021-01200-4
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Due to an increasing requirement for high accuracy orbital information for low Earth orbit (LEO) satellites, precise orbit determination (POD) of LEO satellites is a topic of growing interest. To assure the safety and reliability of the applications requiring high accuracy LEO orbits in near-real-time, integrity monitoring (IM) is an essential operation of the POD process. In this contribution, the IM strategy for LEO POD in both the kinematic and reduced-dynamic modes is investigated. The overbounding parameters of the signal-in-space range error are investigated for the GPS products provided by the International GNSS Service's Real-Time Service and the Multi-GNSS Advanced Demonstration of Orbit and Clock Analysis service. Benefiting from the dynamic models used and the improved model strength, the test results based on the data of the LEO satellite GRACE FO-1 show that the average-case mean protection levels (PLs) can be reduced from about 3-4 m in the kinematic mode to about 1 m in the reduced-dynamic mode in the radial, along-track and cross-track directions. The overbounding mean values of the SISRE play the dominant role in the final PLs. In the reduced-dynamic mode and average-case projection, the IM availabilities reach above 99% in the radial, along-track and cross-track directions with the alert limit (AL) set to 2 m. The values are still above 98% with the AL set to 4 m, when the duty cycle of tracking is reduced to 40%, e.g., in the case of power limits for miniature satellites such as CubeSats.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Real-Time Kinematic Precise Orbit Determination for LEO Satellites Using Zero-Differenced Ambiguity Resolution
    Li, Xingxing
    Wu, Jiaqi
    Zhang, Keke
    Li, Xin
    Xiong, Yun
    Zhang, Qian
    REMOTE SENSING, 2019, 11 (23)
  • [42] Precise orbit determination of integrated BDS-3 and LEO satellites with ambiguity fixing under regional ground stations
    Lai, Wen
    Huang, Guanwen
    Wang, Le
    Qin, Zhiwei
    Li, Run
    Xie, Shichao
    She, Haonan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (11)
  • [43] A Modified Real-time Orbit Determination Algorithm for LEO Satellites
    Lin, Xiaojun
    Li, Liyan
    PROCEEDINGS OF THE 2014 INTERNATIONAL TECHNICAL MEETING OF THE INSTITUTE OF NAVIGATION, 2014, : 534 - 540
  • [44] Precise orbit determination for geostationary satellites with multiple tracking techniques
    GUO Rui 1
    2 Graduate University of Chinese Academy of Sciences
    3 Beijing Global Information Application and Development Center
    Science Bulletin, 2010, (08) : 687 - 692
  • [45] Precise orbit determination of GLONASS satellites at the European Space Agency
    Romero, I
    Garcia, C
    Kahle, R
    Dow, J
    Martin-Mur, T
    NEW TRENDS IN SPACE GEODESY, 2002, 30 (02): : 281 - 287
  • [46] New observational techniques and precise orbit determination of artificial satellites
    Schutz, BE
    DYNAMICS AND ASTROMETRY OF NATURAL AND ARTIFICIAL CELESTIAL BODIES, 1997, : 79 - 85
  • [47] New observational techniques and precise orbit determination of artificial satellites
    Schutz, BE
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1997, 66 (01): : 79 - 85
  • [48] Precise Orbit Determination for BeiDou Satellites During Eclipse Seasons
    Zhu, Jun
    Chen, Jianrong
    Zeng, Guang
    Li, Jie
    Wang, Jiasong
    CHINA SATELLITE NAVIGATION CONFERENCE (CSNC) 2014 PROCEEDINGS, VOL III, 2014, 305 : 3 - 14
  • [49] Precise orbit determination and gravity field improvement for the ERS satellites
    Scharroo, R
    Visser, P
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1998, 103 (C4): : 8113 - 8127
  • [50] Precise orbit determination for geostationary satellites with multiple tracking techniques
    Guo Rui
    Hu XiaoGong
    Tang Bo
    Huang Yong
    Liu Li
    Cheng LiuCheng
    He Feng
    CHINESE SCIENCE BULLETIN, 2010, 55 (08): : 687 - 692