Concurrent Canonical Correlation Analysis Modeling for Quality-Relevant Monitoring

被引:21
|
作者
Zhu, Qinqin [1 ]
Liu, Qiang [1 ,2 ]
Qin, S. Joe [3 ]
机构
[1] Univ Southern Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA
[2] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Liaoning, Peoples R China
[3] Chinese Univ Hong Kong Shenzhen, Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China
来源
IFAC PAPERSONLINE | 2016年 / 49卷 / 07期
基金
中国博士后科学基金;
关键词
Concurrent Canonical Correlation Analysis (CCCA); Quality-Relevant Monitoring; PARTIAL LEAST-SQUARES; PROJECTION; DIAGNOSIS;
D O I
10.1016/j.ifacol.2016.07.340
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Canonical correlation analysis (CCA) is a well-known data analysis technique that extracts multidimensional correlation structure between two groups of variables. Due to the advantages of CCA on quality prediction, CCA-based modeling and monitoring are discussed in this paper. To overcome the shortcoming of CCA that focuses on correlation but ignores variance information, a new concurrent CCA (CCCA) modeling method is proposed to completely decompose the input and output spaces into five subspaces, to retain the CCA efficiency in predicting the output while exploiting the variance structure for process monitoring using subsequent principal component decomposition in the input and output spaces, respectively. The corresponding monitoring statistics and control limits are then developed in these subspaces. The Tennessee Eastman process is used to demonstrate the effectiveness of CCCA-based monitoring methods. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1044 / 1049
页数:6
相关论文
共 50 条
  • [31] Sensitive Quality-Relevant Fault Monitoring using Enhanced Sparse Projection to Latent Structures
    Bai, Xiwei
    Wang, Xuelei
    Tan, Jie
    Qin, Wei
    Zhang, Tianren
    Sun, Wei
    2018 13TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2018, : 687 - 693
  • [32] A quality-relevant monitoring method for closed-loop industrial processes with dual consideration of static and dynamic analysis
    Qin, Y.
    Zhao, C. H.
    PROCEEDINGS OF 2018 10TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC), 2018,
  • [33] Quality-relevant and process-relevant fault monitoring based on GNPER and the fault quantification index for industrial processes
    Mou, Miao
    Zhao, Xiaoqiang
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2023, 101 (02): : 967 - 983
  • [34] Supervised Block-Aware Factorization Machine for Multi-Block Quality-Relevant Monitoring
    Zhu, Qinqin
    IFAC PAPERSONLINE, 2020, 53 (02): : 11283 - 11288
  • [35] Recursive-CPLS-Based Quality-Relevant and Process-Relevant Fault Monitoring With Application to the Tennessee Eastman Process
    Hu, Changhua
    Xu, Zhongying
    Kong, Xiangyu
    Luo, Jiayu
    IEEE ACCESS, 2019, 7 : 128746 - 128757
  • [36] Semi-Supervised Dynamic Latent Variable Regression for Prediction and Quality-Relevant Fault Monitoring
    Liu, Qiang
    Yang, Chao
    Qin, S. Joe
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2024, 32 (04) : 1156 - 1168
  • [37] Quality-relevant dynamic process monitoring based on dynamic total slow feature regression model
    Yan Shifu
    Jiang Qingchao
    Zheng Haiyong
    Yan Xuefeng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2020, 31 (07)
  • [38] Adaptive total PLS based quality-relevant process monitoring with application to the Tennessee Eastman process
    Dong, Jie
    Zhang, Kai
    Huang, Ya
    Li, Gang
    Peng, Kaixiang
    NEUROCOMPUTING, 2015, 154 : 77 - 85
  • [39] Quality-based Process Monitoring with Parallel Regularized Canonical Correlation Analysis
    Wang, Zhaojing
    Yang, Weidong
    Zhang, Hong
    Wang, Yanwei
    Zheng, Ying
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 3992 - 3997
  • [40] Quality-Relevant Fault Monitoring Based on Locally Linear Embedding Orthogonal Projection to Latent Structure
    Zhou, J. L.
    Ren, Y. W.
    Wang, J.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (03) : 1262 - 1272