On a Spectral Version of Cartan's Theorem

被引:0
|
作者
Bera, Sayani [1 ]
Chandel, Vikramjeet Singh [2 ]
Londhe, Mayuresh [3 ]
机构
[1] Indian Assoc Cultivat Sci, Kolkata 700032, India
[2] Harish Chandra Res Inst, Prayagraj 211019, Allahabad, India
[3] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
关键词
Spectrum-preserving maps; Symmetrized product; Iteration theory;
D O I
10.1007/s12220-021-00833-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a domain Omega in the complex plane, we consider the domain S-n(Omega) consisting of those n x n complex matrices whose spectrum is contained in Omega. Given a holomorphic self-map Psi of S-n(Omega) such that Psi(A) = A and the derivative of Psi at A is identity for some A is an element of S-n(Omega), we investigate when the map Psi would be spectrum-preserving. We prove that if the matrix A is either diagonalizable or non-derogatory then for most domains Omega, Psi is spectrum-preserving on S-n(Omega). Further, when A is arbitrary, we prove that Psi is spectrum-preserving on a certain analytic subset of S-n(Omega).
引用
收藏
页数:27
相关论文
共 50 条
  • [41] A difference version of Nori's theorem
    Maier, Annette
    MATHEMATISCHE ANNALEN, 2014, 359 (3-4) : 759 - 784
  • [42] A Strong Version of Cobham's Theorem
    Hieronymi, Philipp
    Schulz, Christian
    PROCEEDINGS OF THE 54TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '22), 2022, : 1172 - 1179
  • [43] A Global version of Grozman's theorem
    Iohara, Kenji
    Mathieu, Olivier
    MATHEMATISCHE ZEITSCHRIFT, 2013, 274 (3-4) : 955 - 992
  • [44] A quantitative version of Picard's theorem
    Bergweiler, W
    ARKIV FOR MATEMATIK, 1996, 34 (02): : 225 - 229
  • [45] A quantum version of Sanov's theorem
    Bjelakovic, I
    Deuschel, JD
    Krüger, T
    Seiler, R
    Siegmund-Schultze, R
    Szkola, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 260 (03) : 659 - 671
  • [46] An effective version of Belyi's Theorem
    Khadjavi, LS
    JOURNAL OF NUMBER THEORY, 2002, 96 (01) : 22 - 47
  • [47] Quasiperiodic Version of Gordon's Theorem
    Bolotin, Sergey V.
    Treschev, Dmitry V.
    REGULAR & CHAOTIC DYNAMICS, 2023, 28 (01): : 5 - 13
  • [48] An asymptotic version of Cobham's theorem
    Konieczny, Jakub
    ACTA ARITHMETICA, 2023, 211 (04) : 323 - 343
  • [49] An intuitionistic version of Cantor's theorem
    Maguolo, D
    Valentini, S
    MATHEMATICAL LOGIC QUARTERLY, 1996, 42 (04) : 446 - 448
  • [50] A tree version of Konig's theorem
    Aharoni, R
    Berger, E
    Ziv, R
    COMBINATORICA, 2002, 22 (03) : 335 - 343