On the generalized Dirichlet problem for viscous Hamilton-Jacobi equations

被引:51
|
作者
Barles, G
Da Lio, F
机构
[1] Univ Tours, Fac Sci & Tech, Lab Math & Phys Theor, CNRS,UMR 6083, F-37200 Tours, France
[2] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
来源
关键词
viscous Hamilton-Jacobi equations; generalized Dirichlet problem; maximum principle; viscosity solutions; semilinear elliptic equations; geometric equations; state-constraint boundary conditions;
D O I
10.1016/S0021-7824(03)00070-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Dirichlet problem for viscous Hamilton-Jacobi equations. Despite this type of equations seems to be uniformly elliptic, loss of boundary conditions may occur because of the strong nonlinearity of the first-order part and therefore the Dirichlet boundary condition has to be understood in the sense of viscosity solutions theory. Under natural assumptions on the initial and boundary data, we prove a Strong Comparison Result which allows us to obtain the existence and the uniqueness of a continuous solution which is defined globally in time. (C) 2003 Elsevier SAS. All rights reserved.
引用
下载
收藏
页码:53 / 75
页数:23
相关论文
共 50 条
  • [31] Numerical approximations of generalized solutions of the Hamilton-Jacobi equations
    Papakov, GV
    Tarasyev, AM
    Uspenskii, AA
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1996, 60 (04): : 567 - 578
  • [32] Extinction and decay estimates for viscous Hamilton-Jacobi equations in RN
    Benachour, S
    Laurençot, P
    Schmitt, D
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (04) : 1103 - 1111
  • [33] Criticality of viscous Hamilton-Jacobi equations and stochastic ergodic control
    Ichihara, Naoyuki
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (03): : 368 - 390
  • [34] A generalized Newton method for homogenization of hamilton-jacobi equations
    Cacace, Simone
    Camilli, Fabio
    SIAM Journal on Scientific Computing, 2016, 38 (06):
  • [35] A GENERALIZED NEWTON METHOD FOR HOMOGENIZATION OF HAMILTON-JACOBI EQUATIONS
    Cacace, Simone
    Camilli, Fabio
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (06): : A3589 - A3617
  • [36] Homogenization of "viscous" Hamilton-Jacobi equations in stationary ergodic media
    Lions, PL
    Souganidis, PE
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (1-3) : 335 - 375
  • [37] ERGODIC PROBLEMS FOR VISCOUS HAMILTON-JACOBI EQUATIONS WITH INWARD DRIFT
    Chasseigne, Emmanuel
    Ichihara, Naoyuki
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (01) : 23 - 52
  • [38] The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces
    Ben-Artzi, M
    Souplet, P
    Weissler, FB
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (04): : 343 - 378
  • [39] Lipschitz regularity for viscous Hamilton-Jacobi equations with LP terms
    Cirant, Marco
    Goffi, Alessandro
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (04): : 757 - 784
  • [40] Decay estimates for "anisotropic" viscous Hamilton-Jacobi equations in RN
    Benachour, S
    Laurençot, P
    JOURNAL OF EVOLUTION EQUATIONS, 2003, 3 (01) : 27 - 37