Equilibrium states for factor maps between subshifts

被引:47
|
作者
Feng, De-Jun [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
Equilibrium states; Factor maps; Topological pressures; Invariant measures; Entropies; Hausdorff dimension; GENERAL SIERPINSKI CARPETS; TO-ONE CODES; VARIATIONAL PRINCIPLE; SINGULARITY SPECTRUM; NONNEGATIVE MATRICES; RELATIVE PRESSURE; INVARIANT-SETS; GIBBS MEASURES; FINITE-TYPE; ENTROPY;
D O I
10.1016/j.aim.2010.09.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let pi : X -> Y be a factor map, where (X, sigma(X)) and (Y, sigma(Y)) are subshifts over finite alphabets. Assume that X satisfies weak specification. Let a = (a(1), a(2)) epsilon R-2 with a(1) > 0 and a(2) >= 0. Let f be a continuous function on X with sufficient regularity (Holder continuity, for instance). We show that there is a unique shift invariant measure mu on X that maximizes integral f d mu + a(1)h(mu) (sigma(X)) + a(2)h(mu o pi-1) (sigma(Y)). In particular, taking f equivalent to 0 we see that there is a unique invariant measure mu on X that maximizes the weighted entropy a(1) h(mu) (sigma(X)) + a(2)h(mu o pi-1) (sigma(Y)), which answers an open question raised by Gatzouras and Peres (1996) in [15]. An extension is given to high dimensional cases. As an application, we show that for each compact invariant set K on the k-torus under a diagonal endomorphism, if the symbolic coding of K satisfies weak specification, then there is a unique invariant measure mu supported on K so that dim(H) mu = dim(H) K. (c) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2470 / 2502
页数:33
相关论文
共 50 条
  • [41] Correlation Spectrum of Quenched and Annealed Equilibrium States for Random Expanding Maps
    Viviane Baladi
    Communications in Mathematical Physics, 1997, 186 : 671 - 700
  • [42] Equilibrium States for Interval Maps: Potentials with sup φ − inf φ < htop(f)
    Henk Bruin
    Mike Todd
    Communications in Mathematical Physics, 2008, 283 : 579 - 611
  • [43] Quenched and annealed equilibrium states for random Ruelle expanding maps and applications
    Stadlbauer, Manuel
    Varandas, Paulo
    Zhang, Xuan
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (09) : 3150 - 3192
  • [44] Equilibrium States for Partially Hyperbolic Maps with One-Dimensional Center
    Carlos F. Álvarez
    Marisa Cantarino
    Journal of Statistical Physics, 190
  • [45] On duality between quantum maps and quantum states
    Zyczkowski, K
    Bengtsson, I
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2004, 11 (01): : 3 - 42
  • [46] Relations between quantum maps and quantum states
    Asorey, M
    Kossakowski, A
    Marmo, G
    Sudarshan, E
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2005, 12 (04): : 319 - 329
  • [47] On the relation between states and maps in infinite dimensions
    Grabowski, Janusz
    Kus, Marek
    Marmo, Giuseppe
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2007, 14 (04): : 355 - 370
  • [48] Factor maps between tiling dynamical systems
    Petersen, K
    FORUM MATHEMATICUM, 1999, 11 (04) : 503 - 512
  • [49] A chiral switch: balancing between equilibrium and non-equilibrium states
    Baglai, Iaroslav
    Leeman, Michel
    Kaptein, Bernard
    Kellogg, Richard M.
    Noorduin, Willem L.
    CHEMICAL COMMUNICATIONS, 2019, 55 (48) : 6910 - 6913
  • [50] Uniqueness and stability of equilibrium states for random non-uniformly expanding maps
    Bilbao, R.
    Ramos, V
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (08) : 2589 - 2623