Convex Multiview Semi-Supervised Classification

被引:26
|
作者
Nie, Feiping [1 ,2 ]
Li, Jing [1 ,2 ]
Li, Xuelong [3 ]
机构
[1] Northwestern Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
[2] Northwestern Univ, Ctr OPT IMagery Anal & Learning, Xian, Shaanxi, Peoples R China
[3] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr OPT IMagery Anal & Learning, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China
基金
美国国家科学基金会;
关键词
Multiview data; semi-supervised classification; weight learning;
D O I
10.1109/TIP.2017.2746270
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many practical applications, there are a great number of unlabeled samples available, while labeling them is a costly and tedious process. Therefore, how to utilize unlabeled samples to assist digging out potential information about the problem is very important. In this paper, we study a multiclass semi-supervised classification task in the context of multiview data. First, an optimization method named Parametric multiview semi-supervised classification (PMSSC) is proposed, where the built classifier for each individual view is explicitly combined with a weight factor. By analyzing the weakness of it, a new adapted weight learning strategy is further formulated, and we come to the convex multiview semi-supervised classification (CMSSC) method. Comparing with the PMSSC, this method has two significant properties. First, without too much loss in performance, the newly used weight learning technique achieves eliminating a hyperparameter, and thus it becomes more compact in form and practical to use. Second, as its name implies, the CMSSC models a convex problem, which avoids the local-minimum problem. Experimental results on several multiview data sets demonstrate that the proposed methods achieve better performances than recent representative methods and the CMSSC is preferred due to its good traits.
引用
收藏
页码:5718 / 5729
页数:12
相关论文
共 50 条
  • [21] Semi-Supervised Hierarchical Graph Classification
    Li, Jia
    Huang, Yongfeng
    Chang, Heng
    Rong, Yu
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 6265 - 6276
  • [22] Semi-Supervised Learning for Classification with Uncertainty
    Zhang, Rui
    Liu, Tong-bo
    Zheng, Ming-wen
    MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 : 3584 - 3590
  • [23] Regularized semi-supervised classification on manifold
    Zhao, LW
    Luo, SW
    Zhao, YC
    Liao, LZ
    Wang, ZH
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2006, 3918 : 20 - 29
  • [24] Manifold contraction for semi-supervised classification
    HU EnLiang 1
    2 School of Mathematics
    Science China(Information Sciences), 2010, 53 (06) : 1170 - 1187
  • [25] Semi-Supervised Classification on Evolutionary Data
    Jia, Yangqing
    Yan, Shuicheng
    Zhang, Changshui
    21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, 2009, : 1083 - 1088
  • [26] An Exploration of Semi-supervised Text Classification
    Lien, Henrik
    Biermann, Daniel
    Palumbo, Fabrizio
    Goodwin, Morten
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EAAAI/EANN 2022, 2022, 1600 : 477 - 488
  • [27] Semi-Supervised Classification with Cluster Ensemble
    Berikov, Vladimir
    Karaev, Nikita
    Tewari, Ankit
    2017 INTERNATIONAL MULTI-CONFERENCE ON ENGINEERING, COMPUTER AND INFORMATION SCIENCES (SIBIRCON), 2017, : 245 - 250
  • [28] Ant Based Semi-supervised Classification
    Halder, Anindya
    Ghosh, Susmita
    Ghosh, Ashish
    SWARM INTELLIGENCE, 2010, 6234 : 376 - +
  • [29] Semi-supervised Classification by Probabilistic Relaxation
    Martinez-Uso, Adolfo
    Pla, Filiberto
    Martinez Sotoca, Jose
    Anaya-Sanchez, Henry
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, 2011, 7042 : 331 - 338
  • [30] Semi-supervised collaborative text classification
    Jin, Rong
    Wu, Ming
    Sukthankar, Rahul
    MACHINE LEARNING: ECML 2007, PROCEEDINGS, 2007, 4701 : 600 - +