Investigation of the contribution of oil biosynthetic enzymes to seed oil content in Brassica napus and Arabidopsis thaliana

被引:0
|
作者
Katavic, Vesna [1 ]
Shi, Lin [1 ]
Yu, Yuanyuan [1 ]
Zhao, Lifang [1 ]
Haughn, George W. [1 ]
Kunst, Ljerka [1 ]
机构
[1] Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada
关键词
Seed oil; mucilage; long-chain acyl CoA synthetases; GL2; mucilage modified 4; phospholipase D zeta; COENZYME-A SYNTHETASE; FATTY-ACID; GLABRA2;
D O I
10.4141/CJPS2013-161
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
One of the critical reactions in triacylglycerol (TAG) biosynthesis is activation of fatty acyl chains to fatty acyl CoAs, catalyzed by long-chain acyl CoA synthetases (LACS). In Arabidopsis thaliana there is a family of nine genes that encode LACSs. Studies to determine whether the products of two of these genes, LACS8 and LACS9, function together to contribute acylCoAs for storage oil biosynthesis in A. thaliana resulted in discovery that it is not LACS8 but LACS1 that functionally overlaps with LACS9 in TAG biosynthesis (published in Plant Journal). To elucidate regulatory mechanisms of seed oil synthesis, the potential roles of phospholipase D zeta (PLDZ) and rhamnose synthase 2 (RHM2/ MUM4) in transcription factor GLABRA2 (GL2)-mediated regulation of seed oil biosynthesis and deposition were investigated. Results demonstrated that PLDZ genes are not involved in GL2-mediated seed oil accumulation and that GL2 regulates seed oil production, at least in part, through its influence on expression of the gene RHM2/ MUM4 required for the seed coat mucilage biosynthesis (published in Plant Journal). A novel Arabidopsis mutant with speckled seed coat and reduced seed oil phenotypes resulting from a mutation in a single unknown gene was identified, but attempts to isolate the gene by positional cloning have not been successful to date (unpublished results). Finally, seed oil content in near-isogenic double haploid Brassica napus lines was analyzed, "low oil'' and "high oil'' lines were identified, and developing seeds for expression profiling of target seed oil biosynthesis/bioassembly genes in selected double haploid lines were collected (unpublished results).
引用
收藏
页码:1109 / 1112
页数:4
相关论文
共 50 条
  • [21] Natural variation for seed oil composition in Arabidopsis thaliana
    O'Neill, CM
    Gill, S
    Hobbs, D
    Morgan, C
    Bancroft, I
    PHYTOCHEMISTRY, 2003, 64 (06) : 1077 - 1090
  • [22] Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus
    Huang, Ke-Lin
    Zhang, Mei-Li
    Ma, Guang-Jing
    Wu, Huan
    Wu, Xiao-Ming
    Ren, Feng
    Li, Xue-Bao
    PLOS ONE, 2017, 12 (06):
  • [23] Fine mapping and candidate gene analysis of a major QTL for oil content in the seed of Brassica napus
    Qing Zhao
    Jian Wu
    Lei Lan
    Muhammad Shahid
    Muhammad Uzair Qasim
    Kaidi Yu
    Chunyu Zhang
    Chuchuan Fan
    Yongming Zhou
    Theoretical and Applied Genetics, 2023, 136
  • [24] Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus)
    Chen, Gang
    Geng, Jianfeng
    Rahman, Mukhlesur
    Liu, Xueping
    Tu, Jingxing
    Fu, Tingdong
    Li, Gengyi
    McVetty, Peter B. E.
    Tahir, M.
    EUPHYTICA, 2010, 175 (02) : 161 - 174
  • [25] Identification of stable QTLs for seed oil content by combined linkage and association mapping in Brassica napus
    Sun, Fengming
    Liu, Jing
    Hua, Wei
    Sun, Xingchao
    Wang, Xinfa
    Wang, Hanzhong
    PLANT SCIENCE, 2016, 252 : 388 - 399
  • [26] Heterosis for Seed Yield, Oil Content and Other Characters in Rapeseed (Brassica napus L.)
    LAOSUWAN Paisan
    MACHIKOWA Thitiporn
    JournalofNortheastAgriculturalUniversity(EnglishEdition), 2010, 17 (01) : 1 - 9
  • [27] Chlorophyll and carbohydrate metabolism in developing silique and seed are prerequisite to seed oil content of Brassica napus L.
    Hua, Shuijin
    Chen, Zhong-Hua
    Zhang, Yaofeng
    Yu, Huasheng
    Lin, Baogang
    Zhang, Dongqing
    BOTANICAL STUDIES, 2014, 55
  • [28] Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus)
    Gang Chen
    Jianfeng Geng
    Mukhlesur Rahman
    Xueping Liu
    Jingxing Tu
    Tingdong Fu
    Gengyi Li
    Peter B. E. McVetty
    M. Tahir
    Euphytica, 2010, 175 : 161 - 174
  • [29] Fine mapping and candidate gene analysis of a major QTL for oil content in the seed of Brassica napus
    Zhao, Qing
    Wu, Jian
    Lan, Lei
    Shahid, Muhammad
    Qasim, Muhammad Uzair
    Yu, Kaidi
    Zhang, Chunyu
    Fan, Chuchuan
    Zhou, Yongming
    THEORETICAL AND APPLIED GENETICS, 2023, 136 (12)
  • [30] Chlorophyll and carbohydrate metabolism in developing silique and seed are prerequisite to seed oil content of Brassica napus L.
    Shuijin Hua
    Zhong-Hua Chen
    Yaofeng Zhang
    Huasheng Yu
    Baogang Lin
    Dongqing Zhang
    Botanical Studies, 55