Salient moving object detection using Stochastic approach filtering

被引:11
|
作者
Tang, Peng [1 ]
Gao, Lin [1 ]
Liu, Zhifang [1 ]
机构
[1] Sichuan Univ, Dept Comp Sci, Image & Grap Inst, Chengdu 610065, Peoples R China
关键词
D O I
10.1109/ICIG.2007.61
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Background modeling techniques are important for object detection and tracking in video surveillance. Traditional background subtraction approaches are suffered from problems, such as persistent dynamic backgrounds, quick illumination changes, occlusions, noise etc. In this paper, we address the problem of detection and localization of moving objects in a video stream without apperception of background statistics. Three major contributions are presented. First, introducing the Monte Carlo importance sampling techniques greatly reduce the computation complexity while compromise the expected accuracy. Second, the robust salient motion is considered When resampling the feature points by removing those who do not move in a relative constant velocity. Finally, the proposed Spatial Kinetic Mixture of Gaussian Model (SKMGM) enforced spatial consistency. Promising results demonstrate the potentials of the proposed framework.
引用
收藏
页码:530 / +
页数:3
相关论文
共 50 条
  • [21] A hybrid approach using color spatial variance and novel object position prior for salient object detection
    Singh, Vivek Kumar
    Kumar, Nitin
    Singh, Navjot
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (39-40) : 30045 - 30067
  • [22] Dynamic Context-Sensitive Filtering Network for Video Salient Object Detection
    Zhang, Miao
    Liu, Jie
    Wang, Yifei
    Piao, Yongri
    Yao, Shunyu
    Ji, Wei
    Li, Jingjing
    Lu, Huchuan
    Luo, Zhongxuan
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 1533 - 1543
  • [23] Salient Object Detection Using Water Flow Approach and Image Boundary Contrast Map
    Mangalraj
    Mohanty, Akankshya
    Singh, Sakshi
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, AND INTELLIGENT SYSTEMS (ICCCIS), 2021, : 161 - 166
  • [24] Robust Registration and Filtering For Moving Object Detection In Aerial Videos
    Schubert, Falk
    Mikolajczyk, Krystian
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 2808 - 2813
  • [25] Nonconvex γ-norm and Laplacian scale mixture with salient map for moving object detection
    Yang, Yongpeng
    Yang, Zhenzhen
    Le, Jun
    Li, Jianlin
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 26159 - 26182
  • [26] Salient object detection method using random graph
    Nouri, Fatemeh
    Kazemi, Kamran
    Danyali, Habibollah
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (19) : 24681 - 24699
  • [27] Salient Object Detection Using Scene Layout Estimation
    Muratov, Oleg
    Boato, Giulia
    De Natale, Francesco G. B.
    [J]. 2013 IEEE 15TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2013, : 390 - 395
  • [28] SALIENT OBJECT DETECTION USING OCTONION WITH BAYESIAN INFERENCE
    Gao, Hong-Yun
    Lam, Kin-Man
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 3292 - 3296
  • [29] SALIENT OBJECT DETECTION USING NORMALIZED CUT AND GEODESICS
    Fu, Keren
    Gong, Chen
    Gu, Irene Y. H.
    Yang, Jie
    Shi, Pengfei
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 1100 - 1104
  • [30] Salient object detection method using random graph
    Fatemeh Nouri
    Kamran Kazemi
    Habibollah Danyali
    [J]. Multimedia Tools and Applications, 2018, 77 : 24681 - 24699