A negative binomial integer-valued GARCH model

被引:157
|
作者
Zhu, Fukang [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Count data; GARCH; negative binomial; observation-driven model; stationarity; time series; 62M10; 62F05; TIME-SERIES; POISSON REGRESSION; COUNTS;
D O I
10.1111/j.1467-9892.2010.00684.x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article discusses the modelling of integer-valued time series with overdispersion and potential extreme observations. For the problem, a negative binomial INGARCH model, a generalization of the Poisson INGARCH model, is proposed and stationarity conditions are given as well as the autocorrelation function. For estimation, we present three approaches with the focus on the maximum likelihood approach. Some results from numerical studies are presented and indicate that the proposed methodology performs better than the Poisson and double Poisson model-based methods.
引用
收藏
页码:54 / 67
页数:14
相关论文
共 50 条
  • [21] An integer-valued threshold autoregressive process based on negative binomial thinning
    Yang, Kai
    Wang, Dehui
    Jia, Boting
    Li, Han
    STATISTICAL PAPERS, 2018, 59 (03) : 1131 - 1160
  • [22] A multiplicative thinning-based integer-valued GARCH model
    Aknouche, Abdelhakim
    Scotto, Manuel G.
    JOURNAL OF TIME SERIES ANALYSIS, 2024, 45 (01) : 4 - 26
  • [23] An integer-valued threshold autoregressive process based on negative binomial thinning
    Kai Yang
    Dehui Wang
    Boting Jia
    Han Li
    Statistical Papers, 2018, 59 : 1131 - 1160
  • [24] Mixing properties of integer-valued GARCH processes
    Doukhan, Paul
    Khan, Naushad Mamode
    Neumann, Michael H.
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2021, 18 (01): : 401 - 420
  • [25] Binomial rings, integer-valued polynomials, and λ-rings
    Elliott, Jesse
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2006, 207 (01) : 165 - 185
  • [26] Mean targeting estimator for the integer-valued GARCH(1, 1) model
    Qi Li
    Fukang Zhu
    Statistical Papers, 2020, 61 : 659 - 679
  • [27] Estimation in an Integer-Valued Autoregressive Process with Negative Binomial Marginals (NBINAR(1))
    Ristic, Miroslav M.
    Nastic, Aleksandar S.
    Bakouch, Hassan S.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (04) : 606 - 618
  • [28] Infinitely Divisible Distributions in Integer-Valued Garch Models
    Goncalves, E.
    Mendes-Lopes, N.
    Silva, F.
    JOURNAL OF TIME SERIES ANALYSIS, 2015, 36 (04) : 503 - 527
  • [29] Forecasting transaction counts with integer-valued GARCH models
    Aknouche, Abdelhakim
    Almohaimeed, Bader S.
    Dimitrakopoulos, Stefanos
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2022, 26 (04): : 529 - 539
  • [30] ERGODIC PROPERTIES OF PERIODIC INTEGER-VALUED GARCH MODELS
    Almohaimeed, Bader S.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2022, 72 (01) : 55 - 70