Scaling properties of bicritical dynamics in unidirectionally coupled period-doubling systems in the presence of noise

被引:0
|
作者
Kapustina, JV
Kuznetsov, AP
Kuznetsov, SP
Mosekilde, E
机构
[1] Inst Radioengn & Elect RAS, Saratov Div, Saratov 410019, Russia
[2] Saratov NG Chernyshevskii State Univ, Dept Nonlinear Proc, Saratov 410026, Russia
[3] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
来源
PHYSICAL REVIEW E | 2001年 / 64卷 / 06期
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study scaling regularities associated with the effects of additive noise on the bicritical behavior of a system of two unidirectionally coupled quadratic maps. A renormalization group analysis of the effects of noise is developed. We outline the qualitative and quantitative differences between the response of the system to random perturbations added to the master subsystem or the slave subsystem. The universal constants determining the rescaling rules for the intensity of the noise sources in the master and slave subsystems are found to be gamma = 6.619036... and v = 2.713708....respectively. A number of computer graphical illustrations for the scaling regularities is presented. We discuss the smearing of the fine structure of the bicritical attractor and the Fourier spectra in the presence of noise, the self-similar structure of the Lyapunov charts on the parameter plane near the bicritical point, and the shift of the threshold of hyperchaos in dependence of the noise intensity.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Multistability formation and loss of chaos synchronization in coupled period-doubling systems
    Uhm, W
    Astakhov, V
    Akopov, A
    Kim, S
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (22-24): : 4013 - 4022
  • [22] Universality and scaling in networks of period-doubling maps with a pacemaker
    Ivanova, Anna S.
    Kuznetsov, Sergey P.
    Osbaldestin, Andrew H.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2006, 2006
  • [23] SCALING THEORY FOR NOISY PERIOD-DOUBLING TRANSITIONS TO CHAOS
    SHRAIMAN, B
    WAYNE, CE
    MARTIN, PC
    PHYSICAL REVIEW LETTERS, 1981, 46 (14) : 935 - 939
  • [24] PERIOD-DOUBLING BIFURCATIONS IN CARDIAC SYSTEMS
    RUIZ, GA
    CHAOS SOLITONS & FRACTALS, 1995, 6 : 487 - 494
  • [25] Different types of scaling in the dynamics of period-doubling maps under external periodic driving
    Ivan'kov, NY
    Kuznetsov, SP
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2000, 5 (03) : 223 - 232
  • [26] EMERGENCE OF QUASI-PERIODICITY IN SYMMETRICALLY COUPLED, IDENTICAL PERIOD-DOUBLING SYSTEMS
    REICK, C
    MOSEKILDE, E
    PHYSICAL REVIEW E, 1995, 52 (02): : 1418 - 1435
  • [27] Oscillation types, multistability, and basins of attractors in symmetrically coupled period-doubling systems
    Bezruchko, BP
    Prokhorov, MD
    Seleznev, YP
    CHAOS SOLITONS & FRACTALS, 2003, 15 (04) : 695 - 711
  • [28] Homoclinic and period-doubling bifurcations for damped systems
    Bessi, Ugo
    Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 1995, 12 (01): : 1 - 25
  • [29] SOME REMARKS ON PERIOD-DOUBLING IN SYSTEMS WITH SYMMETRY
    NICOLAISEN, N
    WERNER, B
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1995, 46 (04): : 566 - 579
  • [30] UNIVERSALITY AND SCALING OF PERIOD-DOUBLING BIFURCATIONS IN A DISSIPATIVE DISTRIBUTED MEDIUM
    KUZNETSOV, SP
    PIKOVSKY, AS
    PHYSICA D, 1986, 19 (03): : 384 - 396