A WED Method for Evaluating the Performance of Change-Point Detection Algorithms

被引:0
|
作者
Qi, Jin-Peng [1 ]
Zhu, Ying [2 ]
Zhang, Ping [3 ]
机构
[1] Donghua Univ, Coll Informat Sci & Technol, Shanghai, Peoples R China
[2] Royal North Shore Hosp, Hunter New England Hlth, St Leonards, NSW, Australia
[3] Griffith Univ, Menzies Hlth Inst, Nathan, Qld, Australia
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
change point detection; weighted error distance; WED; MWED;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Change point detection (CPD) is to find the abrupt changes in a time series. Various computational algorithms have been developed for CPD. To compare the different CPD models, many performance metrics have been introduced to evaluate the algorithms. Each of the previous evaluation methods measures the different aspect of the methods. In this paper, a new weighted error distance (WED) method is proposed to evaluate the overall performance of a CPD model across multiple time series of different lengths. A concept of normalized error distance was introduced to allow comparison of the distances between an estimated change point position and the target change point among models that work on multiple time series. In this study, the WED metrics was applied on synthetic datasets with different sample sizes and variances to evaluate the different CPD models, including: Kolmogorov-Smirnov (KS), SSA and T algorithms. The test results showed the value of this WED method that contributes to the methodology for evaluating the performance of CPD models.
引用
下载
收藏
页码:1406 / 1410
页数:5
相关论文
共 50 条
  • [31] Change-point detection in panel data
    Horvath, Lajos
    Huskova, Marie
    JOURNAL OF TIME SERIES ANALYSIS, 2012, 33 (04) : 631 - 648
  • [32] Change-point detection in meteorological measurement
    Jaruskova, D
    MONTHLY WEATHER REVIEW, 1996, 124 (07) : 1535 - 1543
  • [33] Change-point detection for correlated observations
    Kim, HJ
    STATISTICA SINICA, 1996, 6 (01) : 275 - 287
  • [34] Consistent change-point detection with kernels
    Garreau, Damien
    Arlot, Sylvain
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 4440 - 4486
  • [35] Online change-point detection with kernels
    Ferrari, Andre
    Richard, Cedric
    Bourrier, Anthony
    Bouchikhi, Ikram
    PATTERN RECOGNITION, 2023, 133
  • [36] CHANGE-POINT DETECTION FOR LEVY PROCESSES
    Figueroa-Lopez, Jose E.
    Olafsson, Sveinn
    ANNALS OF APPLIED PROBABILITY, 2019, 29 (02): : 717 - 738
  • [37] Change-point detection using wavelets
    Chen, WF
    Kuo, CCJ
    DIGITAL SIGNAL PROCESSING TECHNOLOGY, 1996, 2750 : 147 - 158
  • [38] Sketching for Sequential Change-Point Detection
    Xie, Yao
    Wang, Meng
    Thompson, Andrew
    2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 78 - 82
  • [39] Differentially Private Change-Point Detection
    Cummings, Rachel
    Krehbiel, Sara
    Mei, Yajun
    Tuo, Rui
    Zhang, Wanrong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [40] Use of Change-Point Analysis tools for evaluating performance in Artificial Pancreas systems
    Serafini, M. C.
    Fushimi, E.
    De Battista, H.
    Garelli, F.
    2018 ARGENTINE CONFERENCE ON AUTOMATIC CONTROL (AADECA), 2018,