Clifford lattices and a conformal generalization of Desargues' theorem

被引:2
|
作者
King, A. D. [1 ]
Schief, W. K. [2 ,3 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[3] Australian Res Council, Ctr Excellence Math & Stat Complex Syst, Canberra, ACT, Australia
关键词
Conformal geometry; Integrable systems; Desargues' theorem; Clifford's configuration; GEOMETRY;
D O I
10.1016/j.geomphys.2011.12.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Lattices composed of Clifford point-circle configurations provide a geometric representation of the discrete Schwarzian KP (dSKP) equation. Based on an A(n) perspective on such lattices, it is shown that their integrability, and hence that of the dSKP equation, is a consequence of a conformal generalization of the classical Desargues theorem of projective geometry. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1088 / 1096
页数:9
相关论文
共 50 条
  • [31] Two-valenced association schemes and the Desargues theorem
    Hirasaka, Mitsugu
    Kim, Kijung
    Ponomarenko, Ilia
    ARABIAN JOURNAL OF MATHEMATICS, 2020, 9 (03) : 481 - 493
  • [32] Interpolation by polynomial functions of distributive lattices: a generalization of a theorem of R.L. Goodstein
    Couceiro, Miguel
    Waldhauser, Tamas
    ALGEBRA UNIVERSALIS, 2013, 69 (03) : 287 - 299
  • [33] GENERALIZATION OF TITCHMARSH' S THEOREM FOR THE FIRST HANKEL-CLIFFORD TRANSFORM IN THE SPACE LμP((0,
    EL Hamma, M.
    Mahfoud, A.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2022, 11 (03): : 56 - 65
  • [34] A Generalization of Algebraic Lattices
    Yang Anzhou (Dept. of Appl. Math.
    Beijing Polytechnic Univ.
    Beijing
    China)
    数学研究与评论, 1992, (04) : 623 - 624
  • [35] On a generalization of Craig lattices
    Chen, Hao
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2013, 25 (01): : 59 - 70
  • [36] A GENERALIZATION OF GOOD LATTICES
    SHIH, SC
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1980, 290 (12): : 527 - 530
  • [37] Clifford algebra of spacetime and the conformal group
    Castro, C
    Pavsic, M
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (08) : 1693 - 1705
  • [38] Clifford Algebra of Spacetime and the Conformal Group
    C. Castro
    M. Pavšič
    International Journal of Theoretical Physics, 2003, 42 : 1693 - 1705
  • [39] Hyperbolic conformal geometry with Clifford algebra
    Li, HB
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2001, 40 (01) : 81 - 93
  • [40] Clifford's theorem for bricks
    Kozakai, Yuta
    Sakai, Arashi
    JOURNAL OF ALGEBRA, 2025, 663 : 765 - 785