OPTIMAL CONSTRAINED INTERPOLATION IN MESH-ADAPTIVE FINITE ELEMENT MODELING

被引:2
|
作者
Maddison, J. R. [1 ,2 ]
Hiester, H. R. [3 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland
[2] Univ Edinburgh, Maxwell Inst Math Sci, Edinburgh EH9 3FD, Midlothian, Scotland
[3] Florida State Univ, Ctr Ocean Atmospher Predict Studies, Tallahassee, FL 32306 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2017年 / 39卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
finite element method; mesh adaptivity; interpolation; lock-exchange; DISCONTINUOUS GALERKIN METHOD; AVAILABLE POTENTIAL-ENERGY; CONSERVATIVE INTERPOLATION; UNSTRUCTURED MESHES; EXTERIOR CALCULUS; FRAMEWORK; FLOW; PROJECTIONS; ENSTROPHY; PAIR;
D O I
10.1137/15M102054X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Mesh-to-mesh Galerkin L-2 projection allows piecewise polynomial unstructured finite element data to be interpolated between two nonmatching unstructured meshes of the same domain. The interpolation is by definition optimal in an L-2 sense, and subject to fairly weak assumptions conserves the integral of an interpolated function. However other properties, such as the L-2 norm, or the weak divergence of a vector-valued function, can still be adversely affected by the interpolation. This is an important issue for calculations in which numerical dissipation should be minimized, or for simulations of incompressible flow. This paper considers extensions to mesh-to-mesh Galerkin L-2 projection which are L-2 optimal and ensure exact conservation of key discrete properties, including preservation of both the L-2 norm and the integral, and preservation of both the L-2 norm and weak incompressibility. The accuracy of the interpolants is studied. The utility of the interpolants is studied via adaptive mesh simulations of the two-dimensional lock-exchange problem, which are simulated using a combination of Fluidity and the FEniCS system.
引用
收藏
页码:A2257 / A2286
页数:30
相关论文
共 50 条
  • [31] An adaptive mesh h-refinement algorithm for the finite-element modeling of sheet forming
    Xing, HL
    Wang, S
    Makinouchi, A
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 1999, 91 (1-3) : 183 - 190
  • [32] Optimal discretizations in adaptive finite element electromagnetics
    McFee, S
    Giannacopoulos, D
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 52 (09) : 939 - 978
  • [33] AN OPTIMAL ADAPTIVE MIXED FINITE ELEMENT METHOD
    Carstensen, Carsten
    Rabus, Hella
    MATHEMATICS OF COMPUTATION, 2011, 80 (274) : 649 - 667
  • [34] An optimal adaptive finite element method for elastoplasticity
    Carsten Carstensen
    Andreas Schröder
    Sebastian Wiedemann
    Numerische Mathematik, 2016, 132 : 131 - 154
  • [35] An optimal adaptive finite element method for elastoplasticity
    Carstensen, Carsten
    Schroeder, Andreas
    Wiedemann, Sebastian
    NUMERISCHE MATHEMATIK, 2016, 132 (01) : 131 - 154
  • [36] Constrained damping layer treatments: Finite element modeling
    Moreira, R
    Rodrigues, JD
    JOURNAL OF VIBRATION AND CONTROL, 2004, 10 (04) : 575 - 595
  • [37] A constrained finite element method for modeling cloth deformation
    Tan, ST
    Wong, TN
    Zhao, YF
    Chen, WJ
    VISUAL COMPUTER, 1999, 15 (02): : 90 - 99
  • [38] Adaptive finite element methods for a fourth order obstacle problem and a state constrained optimal control problem
    Garg, Divay
    Porwal, Kamana
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 207 : 1 - 23
  • [39] A constrained finite element method for modeling cloth deformation
    S. T. Tan
    T. N. Wong
    Y. F. Zhao
    W. J. Chen
    The Visual Computer, 1999, 15 : 90 - 99
  • [40] An optimal finite element mesh for elastostatic structural analysis problems
    Jimack, PK
    COMPUTERS & STRUCTURES, 1997, 64 (1-4) : 197 - 208