Numerical solution of constrained optimal control problems with parameters

被引:35
|
作者
Fabien, BC
机构
[1] Department of Mechanical Engineering, FU-10, University of Washington, Seattle
关键词
D O I
10.1016/0096-3003(95)00280-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article presents a numerical solution technique for constrained optimal control problems that contain parameters. Here, the state, control, and parameter inequality constraints are accommodated via an extended penalty function. This penalty function takes on large values a-hen the constraints are violated and small values when the constraints are satisfied. Using the calculus of variation it is shown that the first-order necessary conditions for optimality are in the form of a two-point boundary-value problem involving differential and algebraic equations (BVP-DAE). A multiple shooting/continuation method is developed for solving this BVP-DAE. Two examples are presented to demonstrate the effectiveness of the solution approach developed in the paper.
引用
下载
收藏
页码:43 / 62
页数:20
相关论文
共 50 条
  • [21] Numerical Solution of Optimal Control Problems with Constant Control Delays
    Ulrich Brandt-Pollmann
    Ralph Winkler
    Sebastian Sager
    Ulf Moslener
    Johannes P. Schlöder
    Computational Economics, 2008, 31 : 181 - 206
  • [22] Numerical solution of optimal control problems with convex control constraints
    Wachsmuth, D.
    Systems, Control, Modeling and Optimization, 2006, 202 : 319 - 327
  • [23] Numerical solution of optimal control problems with constant control delays
    Brandt-Pollmann, Ulrich
    Winkler, Ralph
    Sager, Sebastian
    Moslener, Ulf
    Schloeder, Johannes P.
    COMPUTATIONAL ECONOMICS, 2008, 31 (02) : 181 - 206
  • [24] A SENSITIVITY-BASED EXTRAPOLATION TECHNIQUE FOR THE NUMERICAL SOLUTION OF STATE-CONSTRAINED OPTIMAL CONTROL PROBLEMS
    Hintermueller, Michael
    Yousept, Irwin
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2010, 16 (03) : 503 - 522
  • [25] NUMERICAL SOLUTION TO OPTIMAL CONTROL PROBLEMS OF OSCILLATORY PROCESSES
    Aida-Zade, Kamil
    Asadova, Jamila
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2022, 18 (06) : 4433 - 4445
  • [26] On Numerical Solution of Singularly Perturbed Optimal Control Problems
    Vladimir Gaitsgory
    Matthias Gerdts
    Journal of Optimization Theory and Applications, 2017, 174 : 762 - 784
  • [27] Numerical Solution of a Class of Nonlinear Optimal Control Problems
    Alavi, S. A. Saeed
    Heydari, Aghileh
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2015, 9 (02): : 259 - 275
  • [28] On Numerical Solution of Singularly Perturbed Optimal Control Problems
    Gaitsgory, Vladimir
    Gerdts, Matthias
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 174 (03) : 762 - 784
  • [29] Numerical Solution of Optimal Control Problems for Parabolic Systems
    Fakultät für Mathematik, Technische Universität Chemnitz, 09107 Chemnitz, Germany
    Lect. Notes Comput. Sci. Eng., 2006, (151-169):
  • [30] Numerical algorithm for a class of constrained optimal control problems of switched systems
    Wu, Xiang
    Zhang, Kanjian
    Sun, Changyin
    NUMERICAL ALGORITHMS, 2014, 67 (04) : 771 - 792