Potassium Fluoride and Carbonate Lead to Cell Failure in Potassium-Ion Batteries

被引:30
|
作者
Ells, Andrew W. [1 ]
May, Richard [1 ]
Marbella, Lauren E. [1 ]
机构
[1] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
potassium-ion batteries; solid electrolyte interphase; electrolyte engineering; beyond Li-ion; fluoroethylene carbonate; electrolyte additives; NMR; SOLID-ELECTROLYTE INTERPHASE; FLUOROETHYLENE CARBONATE; K-ION; LITHIUM-FLUORIDE; NMR-SPECTROSCOPY; SEI COMPOUNDS; SODIUM-ION; GRAPHITE; PERFORMANCE; ENERGY;
D O I
10.1021/acsami.1c15174
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
While Li-ion is the prevailing commercial battery chemistry, the development of batteries that use earth-abundant alkali metals (e.g., Na and K) alleviates reliance on Li with potentially cheaper technologies. Electrolyte engineering has been a major thrust of Li-ion battery (LIB) research, and it is unclear if the same electrolyte design principles apply to K-ion batteries (KIBs). Fluoroethylene carbonate (FEC) is a well-known additive used in Li-ion electrolytes because the products of its sacrificial decomposition aid in forming a stable solid electrolyte interphase (SEI) on the anode surface. Here, we show that FEC addition to KIBs containing hard carbon anodes results in a dramatic decrease in capacity and cell failure in only two cycles, whereas capacity retention remains high (> 90% over 100 cycles at C/10 for both KPF6 and KFSI) for electrolytes that do not contain FEC. Using a combination of F-19 solid-state nuclear magnetic resonance (SSNMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS), we show that FEC decomposes during galvanostatic cycling to form insoluble KF and K2CO3 on the anode surface, which correlates with increased interfacial resistance in the cell. Our results strongly suggest that KIB performance is sensitive to the accumulation of an inorganic SEI, likely due to poor K transport in these compounds. This mechanism of FEC decomposition was confirmed in two separate electrolyte formulations using KPF6 or KFSI. Interestingly, the salt anions do not decompose themselves, unlike their Li analogues. Insight from these results indicates that electrolyte decomposition pathways and favorable SEI components are significantly different in KIBs and LIBs, suggesting that entirely new approaches to KIB electrolyte engineering are needed.
引用
收藏
页码:53841 / 53849
页数:9
相关论文
共 50 条
  • [21] Research progress and prospect of potassium-ion batteries
    Liao S.-Q.
    Dong G.-S.
    Zhao Y.-Y.
    Chen Y.-J.
    Cao D.-X.
    Zhu K.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2023, 45 (07): : 1131 - 1148
  • [22] Organic Materials as Electrodes in Potassium-Ion Batteries
    Zhang, Weisheng
    Huang, Weiwei
    Zhang, Qichun
    CHEMISTRY-A EUROPEAN JOURNAL, 2021, 27 (20) : 6131 - 6144
  • [23] 10 Years Development of Potassium-Ion Batteries
    Li, Mingnan
    Wang, Caoyu
    Wang, Cheng
    Lyu, Yanqiu
    Wang, Jingxiu
    Xia, Shuixin
    Mao, Jianfeng
    Guo, Zaiping
    ADVANCED MATERIALS, 2025,
  • [24] Tungsten chalcogenides as anodes for potassium-ion batteries
    Yu-Han Wu
    Wei-Hao Xia
    Yun-Zhuo Liu
    Peng-Fei Wang
    Yu-Hang Zhang
    Jin-Ru Huang
    Yang Xu
    De-Ping Li
    Li-Jie Ci
    Tungsten, 2024, (02) : 278 - 292
  • [25] Engineering the mass transport properties in potassium-ion intercalated pristine Prussian blue for sustainable potassium-ion batteries
    Kumar, Satendra
    Sharma, Riya
    Dubey, Shubha
    Gupta, Mukul
    Natarajan, Sathish
    Kumar, Surender
    JOURNAL OF POWER SOURCES, 2024, 623
  • [26] Rechargeable potassium-ion batteries enabled by potassium-iodine conversion chemistry
    Lu, Ke
    Zhang, Hong
    Ye, Fangliang
    Luo, Wei
    Ma, Houyi
    Huang, Yunhui
    ENERGY STORAGE MATERIALS, 2019, 16 : 1 - 5
  • [27] Revisiting Intercalation Anode Materials for Potassium-Ion Batteries
    Piernas-Munoz, Maria Jose
    Zarrabeitia, Maider
    MATERIALS, 2025, 18 (01)
  • [28] Computational screening of anode materials for potassium-ion batteries
    Yu, Seungho
    Kim, Sang-Ok
    Kim, Hyung-Seok
    Choi, Wonchang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (13) : 7646 - 7654
  • [29] Mechanistic elucidation of thermal runaway in potassium-ion batteries
    Adams, Ryan A.
    Varma, Arvind
    Pol, Vilas G.
    JOURNAL OF POWER SOURCES, 2018, 375 : 131 - 137
  • [30] Could potassium-ion batteries become a competitive technology?
    Zarrabeitia, Maider
    Carretero-Gonzalez, Javier
    Leskes, Michal
    Adenusi, Henry
    Iliev, Boyan
    Schubert, Thomas J. S.
    Passerini, Stefano
    Castillo-Martinez, Elizabeth
    ENERGY MATERIALS, 2023, 3 (06):