Inclined Quadrotor Landing using Deep Reinforcement Learning

被引:14
|
作者
Kooi, Jacob E. [1 ,2 ]
Babuska, Robert [1 ,3 ]
机构
[1] Delft Univ Technol, Dept Cognit Robot, NL-2628 CD Delft, Netherlands
[2] Delft Univ Technol, Delft Ctr Syst & Control, NL-2628 CD Delft, Netherlands
[3] Czech Tech Univ, Czech Inst Informat Robot & Cybernet, Prague, Czech Republic
关键词
D O I
10.1109/IROS51168.2021.9636096
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Landing a quadrotor on an inclined surface is a challenging maneuver. The final state of any inclined landing trajectory is not an equilibrium, which precludes the use of most conventional control methods. We propose a deep reinforcement learning approach to design an autonomous landing controller for inclined surfaces. Using the proximal policy optimization (PPO) algorithm with sparse rewards and a tailored curriculum learning approach, an inclined landing policy can be trained in simulation in less than 90 minutes on a standard laptop. The policy then directly runs on a real Crazyflie 2.1 quadrotor and successfully performs real inclined landings in a flying arena. A single policy evaluation takes approximately 2.5 ms, which makes it suitable for a future embedded implementation on the quadrotor.
引用
收藏
页码:2361 / 2368
页数:8
相关论文
共 50 条
  • [22] Quadrotor Path Following and Reactive Obstacle Avoidance with Deep Reinforcement Learning
    Rubi, Bartomeu
    Morcego, Bernardo
    Perez, Ramon
    [J]. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2021, 103 (04)
  • [23] Autonomous Quadrotor Landing on Inclined Surfaces Using Perception-Guided Active Asymmetric Skids
    Kim, Jinho
    Lesak, Mark C.
    Taylor, Dylan
    Gonzalez, Daniel J.
    Korpela, Christopher M.
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04): : 7877 - 7885
  • [24] Autonomous Quadrotor Landing on Inclined Surfaces in High Particle Environments Using Radar Sensor Perception
    Lesak, Mark C.
    Taylor, Dylan
    Kim, Jinho
    Korpela, Christopher
    [J]. 2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 12352 - 12358
  • [25] Quadrotor Path Following and Reactive Obstacle Avoidance with Deep Reinforcement Learning
    Bartomeu Rubí
    Bernardo Morcego
    Ramon Pérez
    [J]. Journal of Intelligent & Robotic Systems, 2021, 103
  • [26] Control of a Quadrotor With Reinforcement Learning
    Hwangbo, Jemin
    Sa, Inkyu
    Siegwart, Roland
    Hutter, Marco
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (04): : 2096 - 2103
  • [27] Immersion and Invariance-based Adaptive Control for Quadrotor Transportation Systems Using Deep Reinforcement Learning
    Li, Xiaoxi
    Yu, Hai
    Hu, Mingxi
    Liang, Xiao
    Han, Jianda
    Fang, Yongchun
    [J]. 2022 INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (ICARM 2022), 2022, : 1076 - 1081
  • [28] Control of UAV quadrotor using reinforcement learning and robust controller
    Zhang, Zizuo
    Yang, Haiyang
    Fei, Yuanyuan
    Sun, Changyin
    Yu, Yao
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2023, 17 (12): : 1599 - 1610
  • [29] A Deep Reinforcement Learning Strategy for UAV Autonomous Landing on a Moving Platform
    Rodriguez-Ramos, Alejandro
    Sampedro, Carlos
    Bavle, Hriday
    de la Puente, Paloma
    Campoy, Pascual
    [J]. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2019, 93 (1-2) : 351 - 366
  • [30] A Deep Reinforcement Learning Strategy for UAV Autonomous Landing on a Moving Platform
    Alejandro Rodriguez-Ramos
    Carlos Sampedro
    Hriday Bavle
    Paloma de la Puente
    Pascual Campoy
    [J]. Journal of Intelligent & Robotic Systems, 2019, 93 : 351 - 366