CONVERGENCE OF GENERAL NONSTATIONARY ITERATIVE METHODS FOR SOLVING SINGULAR LINEAR EQUATIONS

被引:18
|
作者
Shi, Xinghua [1 ]
Wei, Yimin [1 ,2 ]
Zhang, Wen [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Inst Math, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
singular linear equations; Moore-Penrose inverse; singular Hermitian positive semidefinite; P-regular splitting; two-stage iterative method; quotient convergence; SYSTEMS; SPLITTINGS;
D O I
10.1137/10079015X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze the convergence of the general nonstationary iterative methods for solving consistent singular linear equations (in particular, singular Hermitian positive semidefinite linear systems), and we discuss relations of general stationary results and ours. We utilize the quotient convergence to prove the convergence of the two-stage iterative algorithms for solving the consistent singular Hermitian positive semidefinite linear equations.
引用
收藏
页码:72 / 89
页数:18
相关论文
共 50 条