Recommender Systems: Improving Collaborative Filtering Results

被引:0
|
作者
Bobadilla, Jesus [1 ]
Serradilla, Francisco [1 ]
Gutierrez, Abraham [1 ]
机构
[1] Univ Politecn Madrid, Madrid 28031, Spain
关键词
Collaborative filtering; Recommender Systems; MAE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recommender systems are widely used by companies that sell all or some of their products via the Internet. Furthermore, they are destined to take on an even more important role when their use is generalized as a Web 2.0 social service and is no longer only linked to e-commerce companies. The recommendations that a recommender system offers any given user are based on the preferences shown by a given group of users that have been selected with his/her own similarities. In this paper, we present a series of equations that enable us to obtain each user's importance according to the quality of the recommendations he/she receives and the quality of the recommendations he/she generates. In order to demonstrate the correct operation of the proposed method, we have designed and carried out 90 comparative experiments based on the Movie Lens database, whereby we have obtained results that improve the performance of the recommender system at the same time as they increase its levels of accuracy. Each user's values of importance can be used for the following: to restrict or increase the number of recommendations provided to a user, to add information about the reliability of the suggested recommendations, to inform about the level of influence a user has at each time on the recommendations he/she contributes to others, to achieve an objective measurement in order to reward or encourage users with higher levels of importance and even to make it possible to design and implement applications that enable the recommendations made to be monitored and optimized.
引用
收藏
页码:93 / 99
页数:7
相关论文
共 50 条
  • [31] Similarity Measures for Collaborative Filtering Recommender Systems
    Al Hassanieh, Lamis
    Abou Jaoudeh, Chadi
    Abdo, Jacques Bou
    Demerjian, Jacques
    2018 IEEE MIDDLE EAST AND NORTH AFRICA COMMUNICATIONS CONFERENCE (MENACOMM), 2018, : 165 - 169
  • [32] Improving collaborative filtering recommender system results and performance using satisfaction degree and emotions of users
    Alhijawi, Bushra
    WEB INTELLIGENCE, 2019, 17 (03) : 229 - 241
  • [33] A distributed hybrid collaborative filtering method in recommender systems
    Wang X.-J.
    Wang, Xiao-Jun (xjwang@njupt.edu.cn), 2016, Beijing University of Posts and Telecommunications (39): : 25 - 29
  • [34] ITERATIVE COLLABORATIVE FILTERING FOR RECOMMENDER SYSTEMS WITH SPARSE DATA
    Zhang, Zhuo
    Cuff, Paul
    Kulkarni, Sanjeev
    2012 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2012,
  • [35] Detecting abnormal profiles in collaborative filtering recommender systems
    Zhihai Yang
    Zhongmin Cai
    Journal of Intelligent Information Systems, 2017, 48 : 499 - 518
  • [36] A survey of collaborative filtering based social recommender systems
    Yang, Xiwang
    Guo, Yang
    Liu, Yong
    Steck, Harald
    COMPUTER COMMUNICATIONS, 2014, 41 : 1 - 10
  • [37] Accelerated Online Learning for Collaborative Filtering and Recommender Systems
    Li Yuan-Xiang
    Li Zhi-Jie
    Wang Feng
    Kuang Li
    2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), 2014, : 879 - 885
  • [38] Applying Matrix Factorization In Collaborative Filtering Recommender Systems
    Barathy, R.
    Chitra, P.
    2020 6TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND COMMUNICATION SYSTEMS (ICACCS), 2020, : 635 - 639
  • [39] Trust-aware collaborative filtering for recommender systems
    Massa, P
    Avesani, P
    ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS 2004: COOPIS, DOA, AND ODBASE, PT 1, PROCEEDINGS, 2004, 3290 : 492 - 508
  • [40] Deep Learning Architecture for Collaborative Filtering Recommender Systems
    Bobadilla, Jesus
    Alonso, Santiago
    Hernando, Antonio
    APPLIED SCIENCES-BASEL, 2020, 10 (07):