High Voc in (Cu,Ag)(In,Ga)Se2 Solar Cells

被引:78
|
作者
Edoff, Marika [1 ]
Jarmar, Tobias [2 ]
Nilsson, Nina Shariati [1 ]
Wallin, Erik [2 ]
Hogstrom, Daniel [2 ]
Stolt, Olof [1 ]
Lundberg, Olle [2 ]
Shafarman, William [3 ]
Stolt, Lars [1 ,2 ]
机构
[1] Uppsala Univ, Angstrom Solar Ctr, Div Solid State Elect, Angstrom Lab, S-75236 Uppsala, Sweden
[2] Solibro Res AB, S-75651 Uppsala, Sweden
[3] Univ Delaware, Inst Energy Convers, Newark, DE 19716 USA
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2017年 / 7卷 / 06期
关键词
ACIGS; (Ag; Cu)(Ga; In)Se-2; KF pdt; KF post deposition treatment; thin film solar cells; THIN-FILMS;
D O I
10.1109/JPHOTOV.2017.2756058
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this contribution, we show that silver substitution for copper in Cu(In,Ga)Se-2 (CIGS) to form (Ag,Cu)(In, Ga)Se-2 (ACIGS) leads to a reduction of the voltage loss expressed as E-g/q-V-oc. This, in turn, leads to higher device efficiencies as compared to similar CIGS devices without Ag. We report V-oc at 814 mV at a conversion efficiency of 21% for our best ACIGS device with 20% of the group I element consisting of silver. Comparing ACIGS and CIGS devices with the same Ga/(Ga+ In) ratio, the ACIGS devices exhibit about 0.05 eV higher bandgap. Alkali postdeposition treatment with KF leads to improvements in efficiency both for CIGS and ACIGS, but we find that the dose of KF needed for optimum device for ACIGS is 10-20% of the dose used for CIGS.
引用
收藏
页码:1789 / 1794
页数:6
相关论文
共 50 条
  • [21] The Effect of Absorber Stoichiometry on the Stability of Widegap (Ag,Cu)(In,Ga)Se2 Solar Cells
    Pearson, Patrick
    Keller, Jan
    Stolt, Lars
    Edoff, Marika
    Bjorkman, Charlotte Platzer
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2022, 259 (11):
  • [22] Chemical and structural characterization of high efficiency Cu(In,Ga)Se2 solar cells
    Wada, T
    [J]. TERNARY AND MULTINARY COMPOUNDS, 1998, 152 : 903 - 907
  • [23] Long lifetimes in high-efficiency Cu(In,Ga)Se2 solar cells
    Metzger, Wyatt K.
    Repins, Ingrid L.
    Contreras, Miguel A.
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (02)
  • [24] Stability of Cu(In,Ga)Se2 solar cells: A literature review
    Theelen, Mirjam
    Daume, Felix
    [J]. SOLAR ENERGY, 2016, 133 : 586 - 627
  • [25] Interpretation of admittance signatures in Cu(In,Ga)Se2 solar cells
    Sozzi, Giovanna
    Di Napoli, Simone
    Menozzi, Roberto
    Weiss, Thomas P.
    Buecheler, Stephan
    Tiwari, Ayodya N.
    [J]. 2018 IEEE 7TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION (WCPEC) (A JOINT CONFERENCE OF 45TH IEEE PVSC, 28TH PVSEC & 34TH EU PVSEC), 2018, : 2515 - 2519
  • [26] Model for electronic transport in Cu(In,Ga)Se2 solar cells
    Niemegeers, A
    Burgelman, M
    Herberholz, R
    Rau, U
    Hariskos, D
    Schock, HW
    [J]. PROGRESS IN PHOTOVOLTAICS, 1998, 6 (06): : 407 - 421
  • [27] Ultrathin Cu(In,Ga)Se2 solar cells with Ag-based reflective back contacts
    Gouillart, Louis
    Cattoni, Andrea
    Chen, Wei-Chao
    Zeitouny, Joya
    Riekehr, Lars
    Keller, Jan
    Jubault, Marie
    Naghavi, Negar
    Edoff, Marika
    Collin, Stephane
    [J]. 2020 47TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2020, : 1481 - 1484
  • [28] Optical and electrical modeling of Cu(In,Ga)Se2 solar cells
    Krc, J.
    Cernivec, G.
    Campa, A.
    Malmstrom, J.
    Edoff, M.
    Smole, F.
    Topic, M.
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2006, 38 (12-14) : 1115 - 1123
  • [29] Cu(In,Ga)Se2 superstrate solar cells: prospects and limitations
    Heinemann, Marc Daniel
    Efimova, Varvara
    Klenk, Reiner
    Hoepfner, Britta
    Wollgarten, Markus
    Unold, Thomas
    Schock, Hans-Werner
    Kaufmann, Christian A.
    [J]. PROGRESS IN PHOTOVOLTAICS, 2015, 23 (10): : 1228 - 1237
  • [30] Optical and electrical modeling of Cu(In,Ga)Se2 solar cells
    J. Krc
    G. Cernivec
    A. Campa
    J. Malmström
    M. Edoff
    F. Smole
    M. Topic
    [J]. Optical and Quantum Electronics, 2006, 38 : 1115 - 1123