Cluster identification of sensor data for predictive maintenance in a Selective Laser Melting machine tool

被引:35
|
作者
Uhlmann, Eckart [1 ,2 ]
Pontes, Rodrigo Pastl [1 ]
Geisert, Claudio [1 ]
Hohwieler, Eckhard [1 ]
机构
[1] Fraunhofer Inst Prod Syst & Design Technol IPK, Pascalstr 8-9, D-10587 Berlin, Germany
[2] Tech Univ Berlin, Inst Machine Tools & Factory Management IWF, Pascalstr 8-9, D-10587 Berlin, Germany
关键词
Selective laser melting; sensor data; machine learning; clustering; predictive maintenance;
D O I
10.1016/j.promfg.2018.06.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Selective laser melting has become one of the most current new technologies used to produce complex components in comparison to conventional manufacturing technologies. Especially, existing selective laser melting machine tools are not equipped with analytics tools that evaluate sensor data. This paper describes an approach to analyze and visualize offline data from different sources based on machine learning algorithms. Data from three sensors were utilized to identify clusters. They illustrate the normal operation of the machine tool and three faulty conditions. With these results, a condition monitoring system can be implemented that enables those machine tools for predictive maintenance solutions. (C) 2018 The Authors. Published by Elsevier B.V.
引用
收藏
页码:60 / 65
页数:6
相关论文
共 50 条
  • [22] Laser shock peening: A promising tool for tailoring metallic microstructures in selective laser melting
    Kalentics, N.
    Huang, K.
    de Seijas, M. Ortega Varela
    Burn, A.
    Romano, V.
    Loge, R. E.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2019, 266 : 612 - 618
  • [23] Microstructure and properties of FeCrMoVC tool steel produced by selective laser melting
    Sander, J.
    Hufenbach, J.
    Giebeler, L.
    Wendrock, H.
    Kuehn, U.
    Eckert, J.
    MATERIALS & DESIGN, 2016, 89 : 335 - 341
  • [24] Improving surface quality in selective laser melting based tool making
    Filippo Simoni
    Andrea Huxol
    Franz-Josef Villmer
    Journal of Intelligent Manufacturing, 2021, 32 : 1927 - 1938
  • [25] Improving surface quality in selective laser melting based tool making
    Simoni, Filippo
    Huxol, Andrea
    Villmer, Franz-Josef
    JOURNAL OF INTELLIGENT MANUFACTURING, 2021, 32 (07) : 1927 - 1938
  • [26] Further studies in selective laser melting of stainless and tool steel powders
    Badrossamay, M.
    Childs, T. H. C.
    INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2007, 47 (05): : 779 - 784
  • [27] Identification of Machine Tool Defects Using Laser Interferometer
    Matus, Miroslav
    Bechny, Vladimir
    Joch, Richard
    Drbul, Mario
    Czan, Andrej
    Sajgalik, Michal
    MANUFACTURING TECHNOLOGY, 2024, 24 (03): : 420 - 428
  • [28] Type HRPM-II machine for selective laser melting process
    Zhang Wenxian
    Shi Yusheng
    Liu Jinhui
    Lu Zhongliang
    Chen Guoqing
    Huang Shuhuai
    VIRTUAL AND RAPID MANUFACTURING: ADVANCED RESEARCH IN VIRTUAL AND RAPID PROTOTYPING, 2008, : 541 - 544
  • [29] Predicting the Printability in Selective Laser Melting with a Supervised Machine Learning Method
    Chen, Yingyan
    Wang, Hongze
    Wu, Yi
    Wang, Haowei
    MATERIALS, 2020, 13 (22) : 1 - 12
  • [30] Predictive Maintenance of Machine Tool Linear Axes: A Case from Manufacturing Industry
    Schmidt, Bernard
    Wang, Lihui
    28TH INTERNATIONAL CONFERENCE ON FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING (FAIM2018): GLOBAL INTEGRATION OF INTELLIGENT MANUFACTURING AND SMART INDUSTRY FOR GOOD OF HUMANITY, 2018, 17 : 118 - 125