Cluster identification of sensor data for predictive maintenance in a Selective Laser Melting machine tool

被引:35
|
作者
Uhlmann, Eckart [1 ,2 ]
Pontes, Rodrigo Pastl [1 ]
Geisert, Claudio [1 ]
Hohwieler, Eckhard [1 ]
机构
[1] Fraunhofer Inst Prod Syst & Design Technol IPK, Pascalstr 8-9, D-10587 Berlin, Germany
[2] Tech Univ Berlin, Inst Machine Tools & Factory Management IWF, Pascalstr 8-9, D-10587 Berlin, Germany
关键词
Selective laser melting; sensor data; machine learning; clustering; predictive maintenance;
D O I
10.1016/j.promfg.2018.06.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Selective laser melting has become one of the most current new technologies used to produce complex components in comparison to conventional manufacturing technologies. Especially, existing selective laser melting machine tools are not equipped with analytics tools that evaluate sensor data. This paper describes an approach to analyze and visualize offline data from different sources based on machine learning algorithms. Data from three sensors were utilized to identify clusters. They illustrate the normal operation of the machine tool and three faulty conditions. With these results, a condition monitoring system can be implemented that enables those machine tools for predictive maintenance solutions. (C) 2018 The Authors. Published by Elsevier B.V.
引用
收藏
页码:60 / 65
页数:6
相关论文
共 50 条
  • [1] Concept of Sustainable Data for a Selective Laser Melting Machine
    Uhlmann, Eckart
    Pontes, Rodrigo Pastl
    Laghmouchi, Abdelhakim
    Bergmann, Andre
    15TH GLOBAL CONFERENCE ON SUSTAINABLE MANUFACTURING, 2018, 21 : 655 - 662
  • [2] Adding interpretability to predictive maintenance by machine learning on sensor data
    Steurtewagen, Bram
    Van den Poel, Dirk
    COMPUTERS & CHEMICAL ENGINEERING, 2021, 152
  • [3] Predictive maintenance and machine tool calibration techniques
    Wang, Charles
    Thomas, Bob
    Modern Machine Shop, 1997, 69 (11): : 102 - 108
  • [4] Predictive Maintenance on the Machining Process and Machine Tool
    Jimenez-Cortadi, Alberto
    Irigoien, Itziar
    Boto, Fernando
    Sierra, Basilio
    Rodriguez, German
    APPLIED SCIENCES-BASEL, 2020, 10 (01):
  • [5] On Sensor Data Clustering for Machine Status Monitoring and Its Application to Predictive Maintenance
    Oliosi, Eleonora
    Calzavara, Gabriele
    Ferrari, Gianluigi
    IEEE SENSORS JOURNAL, 2023, 23 (09) : 9620 - 9639
  • [6] Machine Learning for Predictive Maintenance of Industrial Machines using IoT Sensor Data
    Kanawaday, Ameeth
    Sane, Aditya
    PROCEEDINGS OF 2017 8TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2017), 2017, : 87 - 90
  • [7] Smart Life Cycle Monitoring for Sustainable Maintenance and Production - an example for Selective Laser Melting machine
    Uhlmann, Eckart
    Pontes, Rodrigo Pastl
    Laghmouchi, Abdelhakim
    Geisert, Claudio
    Hohwieler, Eckhard
    27TH INTERNATIONAL CONFERENCE ON FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING, FAIM2017, 2017, 11 : 711 - 717
  • [8] Predictive Maintenance of Machine Tool Systems Using Artificial Intelligence Techniques Applied to Machine Condition Data
    Lee, Wo Jae
    Wu, Haiyue
    Yun, Huitaek
    Kim, Hanjun
    Jun, Martin B. G.
    Sutherland, John W.
    26TH CIRP CONFERENCE ON LIFE CYCLE ENGINEERING (LCE), 2019, 80 : 506 - 511
  • [9] Batch Model Predictive Control for Selective Laser Melting
    Zuliani, Riccardo
    Balta, Efe C.
    Rupenyan, Alisa
    Lygeros, John
    2022 EUROPEAN CONTROL CONFERENCE (ECC), 2022, : 1560 - 1565
  • [10] Predictive Maintenance Under Absence of Sensor Data
    Pierros, Ioannis
    Kochliaridis, Vasileios
    Apostolidou, Eirini
    Delimpasi, Eleni
    Zygouris, Vasileios
    Vlahavas, Ioannis
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, PT II, AIAI 2024, 2024, 712 : 279 - 292