New sufficient conditions for observer-based control of fractional-order uncertain systems

被引:73
|
作者
Ibrir, Salim [1 ]
Bettayeb, Maamar [2 ,3 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Elect Engn, Dhahran 31261, Saudi Arabia
[2] Univ Sharjah, Dept Elect & Comp Engn, Univ City, Sharjah, U Arab Emirates
[3] King Abdulaziz Univ, Coll Engn, Jeddah 21413, Saudi Arabia
关键词
Fractional-order systems; Observer-based control; Convex-optimizations; Linear Matrix Inequalities (LMIs); LINEAR-SYSTEMS; ROBUST-CONTROL; STABILITY;
D O I
10.1016/j.automatica.2015.06.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
New simple linear matrix inequalities are proposed to ensure the stability of a class of uncertain fractional-order linear systems by means of a fractional-order deterministic observer. It is shown that the conditions of existence of an observer-based feedback can be split into a set of linear matrix inequalities that are numerically tractable. The presented results show that it is possible to decouple the conditions containing the bilinear variables into separate conditions without imposing equality constraints or considering an iterative search of the controller and the observer gains. Simulations results are given to approve the efficiency and the straightforwardness of the proposed design. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:216 / 223
页数:8
相关论文
共 50 条
  • [21] Fractional-Order Nonlinear Disturbance Observer Based Control of Fractional-Order Systems
    Munoz-Vazquez, Aldo Jonathan
    Parra-Vega, Vicente
    Sanchez-Orta, Anand
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (07):
  • [22] Anti-disturbance observer-based proportional-retarded control design for polytopic uncertain fractional-order systems
    Sakthivel, R.
    Sweetha, S.
    Mohanapriya, S.
    Kwon, O. M.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2023, 54 (16) : 3098 - 3111
  • [23] Adaptive fuzzy observer-based cooperative control of unknown fractional-order multi-agent systems with uncertain dynamics
    Afaghi, A.
    Ghaemi, S.
    Ghiasi, A. R.
    Badamchizadeh, M. A.
    SOFT COMPUTING, 2020, 24 (05) : 3737 - 3752
  • [24] Observer-based robust control of a (1 ≤ a < 2) fractional-order uncertain systems: a linear matrix inequality approach
    Lan, Y. -H.
    Huang, H. -X.
    Zhou, Y.
    IET CONTROL THEORY AND APPLICATIONS, 2012, 6 (02): : 229 - 234
  • [25] Adaptive fuzzy observer-based cooperative control of unknown fractional-order multi-agent systems with uncertain dynamics
    A. Afaghi
    S. Ghaemi
    A. R. Ghiasi
    M. A. Badamchizadeh
    Soft Computing, 2020, 24 : 3737 - 3752
  • [26] Observer-based offset-free model predictive control for fractional-order systems
    Yaghini, Hossein Hassanzadeh
    Bagheri, Peyman
    Kharrati, Hamed
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (06) : 1942 - 1951
  • [27] Observer-based control for nonlinear Hadamard fractional-order systems via SOS approach
    Gassara, Hamdi
    Naifar, Omar
    Chaabane, Mohamed
    Ben Makhlouf, Abdellatif
    Arfaoui, Hassen
    Aldandani, Mohammed
    ASIAN JOURNAL OF CONTROL, 2025, 27 (02) : 912 - 920
  • [28] Optimal observer-based feedback control for linear fractional-order systems with periodic coefficients
    Dabiri, Arman
    Butcher, Eric A.
    JOURNAL OF VIBRATION AND CONTROL, 2019, 25 (07) : 1379 - 1392
  • [29] Disturbance observer-based fractional-order nonlinear sliding mode control for a class of fractional-order systems with matched and mismatched disturbances
    Razzaghian, Amir
    Moghaddam, Reihaneh Kardehi
    Pariz, Naser
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2021, 9 (02) : 671 - 678
  • [30] Disturbance observer-based fractional-order nonlinear sliding mode control for a class of fractional-order systems with matched and mismatched disturbances
    Amir Razzaghian
    Reihaneh Kardehi Moghaddam
    Naser Pariz
    International Journal of Dynamics and Control, 2021, 9 : 671 - 678